| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// An example of solving a dynamically sized problem with various// solvers and loss functions.//// For a simpler bare bones example of doing bundle adjustment with// Ceres, please see simple_bundle_adjuster.cc.//// NOTE: This example will not compile without gflags and SuiteSparse.//// The problem being solved here is known as a Bundle Adjustment// problem in computer vision. Given a set of 3d points X_1, ..., X_n,// a set of cameras P_1, ..., P_m. If the point X_i is visible in// image j, then there is a 2D observation u_ij that is the expected// projection of X_i using P_j. The aim of this optimization is to// find values of X_i and P_j such that the reprojection error////    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2//// is minimized.//// The problem used here comes from a collection of bundle adjustment// problems published at University of Washington.// http://grail.cs.washington.edu/projects/bal#include <algorithm>#include <cmath>#include <cstdio>#include <cstdlib>#include <string>#include <vector>#include "bal_problem.h"#include "ceres/ceres.h"#include "gflags/gflags.h"#include "glog/logging.h"#include "snavely_reprojection_error.h"DEFINE_string(input, "", "Input File name");DEFINE_string(trust_region_strategy, "levenberg_marquardt",              "Options are: levenberg_marquardt, dogleg.");DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"              "subspace_dogleg.");DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "            "refine each successful trust region step.");DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "            "automatic, cameras, points, cameras,points, points,cameras");DEFINE_string(linear_solver, "sparse_schur", "Options are: "              "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "              "dense_qr, dense_normal_cholesky and cgnr.");DEFINE_bool(explicit_schur_complement, false, "If using ITERATIVE_SCHUR "            "then explicitly compute the Schur complement.");DEFINE_string(preconditioner, "jacobi", "Options are: "              "identity, jacobi, schur_jacobi, cluster_jacobi, "              "cluster_tridiagonal.");DEFINE_string(visibility_clustering, "canonical_views",              "single_linkage, canonical_views");DEFINE_string(sparse_linear_algebra_library, "suite_sparse",              "Options are: suite_sparse and cx_sparse.");DEFINE_string(dense_linear_algebra_library, "eigen",              "Options are: eigen and lapack.");DEFINE_string(ordering, "automatic", "Options are: automatic, user.");DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "            "rotations. If false, angle axis is used.");DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "            "parameterization.");DEFINE_bool(robustify, false, "Use a robust loss function.");DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "             "accuracy of each linear solve of the truncated newton step. "             "Changing this parameter can affect solve performance.");DEFINE_int32(num_threads, 1, "Number of threads.");DEFINE_int32(num_iterations, 5, "Number of iterations.");DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"            " nonmonotic steps.");DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "              "perturbation.");DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "              "translation perturbation.");DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "              "perturbation.");DEFINE_int32(random_seed, 38401, "Random seed used to set the state "             "of the pseudo random number generator used to generate "             "the pertubations.");DEFINE_bool(line_search, false, "Use a line search instead of trust region "            "algorithm.");DEFINE_string(initial_ply, "", "Export the BAL file data as a PLY file.");DEFINE_string(final_ply, "", "Export the refined BAL file data as a PLY "              "file.");namespace ceres {namespace examples {void SetLinearSolver(Solver::Options* options) {  CHECK(StringToLinearSolverType(FLAGS_linear_solver,                                 &options->linear_solver_type));  CHECK(StringToPreconditionerType(FLAGS_preconditioner,                                   &options->preconditioner_type));  CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering,                                         &options->visibility_clustering_type));  CHECK(StringToSparseLinearAlgebraLibraryType(            FLAGS_sparse_linear_algebra_library,            &options->sparse_linear_algebra_library_type));  CHECK(StringToDenseLinearAlgebraLibraryType(            FLAGS_dense_linear_algebra_library,            &options->dense_linear_algebra_library_type));  options->num_linear_solver_threads = FLAGS_num_threads;  options->use_explicit_schur_complement = FLAGS_explicit_schur_complement;}void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {  const int num_points = bal_problem->num_points();  const int point_block_size = bal_problem->point_block_size();  double* points = bal_problem->mutable_points();  const int num_cameras = bal_problem->num_cameras();  const int camera_block_size = bal_problem->camera_block_size();  double* cameras = bal_problem->mutable_cameras();  if (options->use_inner_iterations) {    if (FLAGS_blocks_for_inner_iterations == "cameras") {      LOG(INFO) << "Camera blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_cameras; ++i) {        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);      }    } else if (FLAGS_blocks_for_inner_iterations == "points") {      LOG(INFO) << "Point blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_points; ++i) {        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);      }    } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {      LOG(INFO) << "Camera followed by point blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_cameras; ++i) {        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);      }      for (int i = 0; i < num_points; ++i) {        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);      }    } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {      LOG(INFO) << "Point followed by camera blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_cameras; ++i) {        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);      }      for (int i = 0; i < num_points; ++i) {        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);      }    } else if (FLAGS_blocks_for_inner_iterations == "automatic") {      LOG(INFO) << "Choosing automatic blocks for inner iterations";    } else {      LOG(FATAL) << "Unknown block type for inner iterations: "                 << FLAGS_blocks_for_inner_iterations;    }  }  // Bundle adjustment problems have a sparsity structure that makes  // them amenable to more specialized and much more efficient  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and  // ITERATIVE_SCHUR solvers make use of this specialized  // structure.  //  // This can either be done by specifying Options::ordering_type =  // ceres::SCHUR, in which case Ceres will automatically determine  // the right ParameterBlock ordering, or by manually specifying a  // suitable ordering vector and defining  // Options::num_eliminate_blocks.  if (FLAGS_ordering == "automatic") {    return;  }  ceres::ParameterBlockOrdering* ordering =      new ceres::ParameterBlockOrdering;  // The points come before the cameras.  for (int i = 0; i < num_points; ++i) {    ordering->AddElementToGroup(points + point_block_size * i, 0);  }  for (int i = 0; i < num_cameras; ++i) {    // When using axis-angle, there is a single parameter block for    // the entire camera.    ordering->AddElementToGroup(cameras + camera_block_size * i, 1);  }  options->linear_solver_ordering.reset(ordering);}void SetMinimizerOptions(Solver::Options* options) {  options->max_num_iterations = FLAGS_num_iterations;  options->minimizer_progress_to_stdout = true;  options->num_threads = FLAGS_num_threads;  options->eta = FLAGS_eta;  options->max_solver_time_in_seconds = FLAGS_max_solver_time;  options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;  if (FLAGS_line_search) {    options->minimizer_type = ceres::LINE_SEARCH;  }  CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,                                        &options->trust_region_strategy_type));  CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));  options->use_inner_iterations = FLAGS_inner_iterations;}void SetSolverOptionsFromFlags(BALProblem* bal_problem,                               Solver::Options* options) {  SetMinimizerOptions(options);  SetLinearSolver(options);  SetOrdering(bal_problem, options);}void BuildProblem(BALProblem* bal_problem, Problem* problem) {  const int point_block_size = bal_problem->point_block_size();  const int camera_block_size = bal_problem->camera_block_size();  double* points = bal_problem->mutable_points();  double* cameras = bal_problem->mutable_cameras();  // Observations is 2*num_observations long array observations =  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x  // and y positions of the observation.  const double* observations = bal_problem->observations();  for (int i = 0; i < bal_problem->num_observations(); ++i) {    CostFunction* cost_function;    // Each Residual block takes a point and a camera as input and    // outputs a 2 dimensional residual.    cost_function =        (FLAGS_use_quaternions)        ? SnavelyReprojectionErrorWithQuaternions::Create(            observations[2 * i + 0],            observations[2 * i + 1])        : SnavelyReprojectionError::Create(            observations[2 * i + 0],            observations[2 * i + 1]);    // If enabled use Huber's loss function.    LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;    // Each observation correponds to a pair of a camera and a point    // which are identified by camera_index()[i] and point_index()[i]    // respectively.    double* camera =        cameras + camera_block_size * bal_problem->camera_index()[i];    double* point = points + point_block_size * bal_problem->point_index()[i];    problem->AddResidualBlock(cost_function, loss_function, camera, point);  }  if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {    LocalParameterization* camera_parameterization =        new ProductParameterization(            new QuaternionParameterization(),            new IdentityParameterization(6));    for (int i = 0; i < bal_problem->num_cameras(); ++i) {      problem->SetParameterization(cameras + camera_block_size * i,                                   camera_parameterization);    }  }}void SolveProblem(const char* filename) {  BALProblem bal_problem(filename, FLAGS_use_quaternions);  if (!FLAGS_initial_ply.empty()) {    bal_problem.WriteToPLYFile(FLAGS_initial_ply);  }  Problem problem;  srand(FLAGS_random_seed);  bal_problem.Normalize();  bal_problem.Perturb(FLAGS_rotation_sigma,                      FLAGS_translation_sigma,                      FLAGS_point_sigma);  BuildProblem(&bal_problem, &problem);  Solver::Options options;  SetSolverOptionsFromFlags(&bal_problem, &options);  options.gradient_tolerance = 1e-16;  options.function_tolerance = 1e-16;  Solver::Summary summary;  Solve(options, &problem, &summary);  std::cout << summary.FullReport() << "\n";  if (!FLAGS_final_ply.empty()) {    bal_problem.WriteToPLYFile(FLAGS_final_ply);  }}}  // namespace examples}  // namespace ceresint main(int argc, char** argv) {  CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  if (FLAGS_input.empty()) {    LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem";    return 1;  }  CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)      << "--use_local_parameterization can only be used with "      << "--use_quaternions.";  ceres::examples::SolveProblem(FLAGS_input.c_str());  return 0;}
 |