| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040 | .. default-domain:: cpp.. cpp:namespace:: ceres.. _`chapter-nnls_modeling`:=================================Modeling Non-linear Least Squares=================================Introduction============Ceres solver consists of two distinct parts. A modeling API whichprovides a rich set of tools to construct an optimization problem oneterm at a time and a solver API that controls the minimizationalgorithm. This chapter is devoted to the task of modelingoptimization problems using Ceres. :ref:`chapter-nnls_solving` discussesthe various ways in which an optimization problem can be solved usingCeres.Ceres solves robustified bounds constrained non-linear least squaresproblems of the form:.. math:: :label: ceresproblem   \min_{\mathbf{x}} &\quad \frac{1}{2}\sum_{i}   \rho_i\left(\left\|f_i\left(x_{i_1},   ... ,x_{i_k}\right)\right\|^2\right)  \\   \text{s.t.} &\quad l_j \le x_j \le u_jIn Ceres parlance, the expression:math:`\rho_i\left(\left\|f_i\left(x_{i_1},...,x_{i_k}\right)\right\|^2\right)`is known as a **residual block**, where :math:`f_i(\cdot)` is a:class:`CostFunction` that depends on the **parameter blocks**:math:`\left\{x_{i_1},... , x_{i_k}\right\}`.In most optimization problems small groups of scalars occurtogether. For example the three components of a translation vector andthe four components of the quaternion that define the pose of acamera. We refer to such a group of scalars as a **parameter block**. Ofcourse a parameter block can be just a single scalar too.:math:`\rho_i` is a :class:`LossFunction`. A :class:`LossFunction` isa scalar valued function that is used to reduce the influence ofoutliers on the solution of non-linear least squares problems.:math:`l_j` and :math:`u_j` are lower and upper bounds on theparameter block :math:`x_j`.As a special case, when :math:`\rho_i(x) = x`, i.e., the identityfunction, and :math:`l_j = -\infty` and :math:`u_j = \infty` we getthe more familiar unconstrained `non-linear least squares problem<http://en.wikipedia.org/wiki/Non-linear_least_squares>`_... math:: :label: ceresproblemunconstrained   \frac{1}{2}\sum_{i} \left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2.:class:`CostFunction`=====================For each term in the objective function, a :class:`CostFunction` isresponsible for computing a vector of residuals and if asked a vectorof Jacobian matrices, i.e., given :math:`\left[x_{i_1}, ... ,x_{i_k}\right]`, compute the vector:math:`f_i\left(x_{i_1},...,x_{i_k}\right)` and the matrices .. math:: J_{ij} = \frac{\partial}{\partial           x_{i_j}}f_i\left(x_{i_1},...,x_{i_k}\right),\quad \forall j           \in \{1, \ldots, k\}.. class:: CostFunction   .. code-block:: c++    class CostFunction {     public:      virtual bool Evaluate(double const* const* parameters,                            double* residuals,                            double** jacobians) = 0;      const vector<int32>& parameter_block_sizes();      int num_residuals() const;     protected:      vector<int32>* mutable_parameter_block_sizes();      void set_num_residuals(int num_residuals);    };The signature of the :class:`CostFunction` (number and sizes of inputparameter blocks and number of outputs) is stored in:member:`CostFunction::parameter_block_sizes_` and:member:`CostFunction::num_residuals_` respectively. User codeinheriting from this class is expected to set these two members withthe corresponding accessors. This information will be verified by the:class:`Problem` when added with :func:`Problem::AddResidualBlock`... function:: bool CostFunction::Evaluate(double const* const* parameters, double* residuals, double** jacobians)   Compute the residual vector and the Jacobian matrices.   ``parameters`` is an array of pointers to arrays containing the   various parameter blocks. ``parameters`` has the same number of   elements as :member:`CostFunction::parameter_block_sizes_` and the   parameter blocks are in the same order as   :member:`CostFunction::parameter_block_sizes_`.   ``residuals`` is an array of size ``num_residuals_``.   ``jacobians`` is an array of size   :member:`CostFunction::parameter_block_sizes_` containing pointers   to storage for Jacobian matrices corresponding to each parameter   block. The Jacobian matrices are in the same order as   :member:`CostFunction::parameter_block_sizes_`. ``jacobians[i]`` is   an array that contains :member:`CostFunction::num_residuals_` x   :member:`CostFunction::parameter_block_sizes_` ``[i]``   elements. Each Jacobian matrix is stored in row-major order, i.e.,   ``jacobians[i][r * parameter_block_size_[i] + c]`` =   :math:`\frac{\partial residual[r]}{\partial parameters[i][c]}`   If ``jacobians`` is ``NULL``, then no derivatives are returned;   this is the case when computing cost only. If ``jacobians[i]`` is   ``NULL``, then the Jacobian matrix corresponding to the   :math:`i^{\textrm{th}}` parameter block must not be returned, this   is the case when a parameter block is marked constant.   **NOTE** The return value indicates whether the computation of the   residuals and/or jacobians was successful or not.   This can be used to communicate numerical failures in Jacobian   computations for instance.:class:`SizedCostFunction`==========================.. class:: SizedCostFunction   If the size of the parameter blocks and the size of the residual   vector is known at compile time (this is the common case),   :class:`SizeCostFunction` can be used where these values can be   specified as template parameters and the user only needs to   implement :func:`CostFunction::Evaluate`.   .. code-block:: c++    template<int kNumResiduals,             int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,             int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>    class SizedCostFunction : public CostFunction {     public:      virtual bool Evaluate(double const* const* parameters,                            double* residuals,                            double** jacobians) const = 0;    };:class:`AutoDiffCostFunction`=============================.. class:: AutoDiffCostFunction   Defining a :class:`CostFunction` or a :class:`SizedCostFunction`   can be a tedious and error prone especially when computing   derivatives.  To this end Ceres provides `automatic differentiation   <http://en.wikipedia.org/wiki/Automatic_differentiation>`_.   .. code-block:: c++     template <typename CostFunctor,            int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC.            int N0,       // Number of parameters in block 0.            int N1 = 0,   // Number of parameters in block 1.            int N2 = 0,   // Number of parameters in block 2.            int N3 = 0,   // Number of parameters in block 3.            int N4 = 0,   // Number of parameters in block 4.            int N5 = 0,   // Number of parameters in block 5.            int N6 = 0,   // Number of parameters in block 6.            int N7 = 0,   // Number of parameters in block 7.            int N8 = 0,   // Number of parameters in block 8.            int N9 = 0>   // Number of parameters in block 9.     class AutoDiffCostFunction : public     SizedCostFunction<kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {      public:       explicit AutoDiffCostFunction(CostFunctor* functor);       // Ignore the template parameter kNumResiduals and use       // num_residuals instead.       AutoDiffCostFunction(CostFunctor* functor, int num_residuals);     };   To get an auto differentiated cost function, you must define a   class with a templated ``operator()`` (a functor) that computes the   cost function in terms of the template parameter ``T``. The   autodiff framework substitutes appropriate ``Jet`` objects for   ``T`` in order to compute the derivative when necessary, but this   is hidden, and you should write the function as if ``T`` were a   scalar type (e.g. a double-precision floating point number).   The function must write the computed value in the last argument   (the only non-``const`` one) and return true to indicate success.   For example, consider a scalar error :math:`e = k - x^\top y`,   where both :math:`x` and :math:`y` are two-dimensional vector   parameters and :math:`k` is a constant. The form of this error,   which is the difference between a constant and an expression, is a   common pattern in least squares problems. For example, the value   :math:`x^\top y` might be the model expectation for a series of   measurements, where there is an instance of the cost function for   each measurement :math:`k`.   The actual cost added to the total problem is :math:`e^2`, or   :math:`(k - x^\top y)^2`; however, the squaring is implicitly done   by the optimization framework.   To write an auto-differentiable cost function for the above model,   first define the object   .. code-block:: c++    class MyScalarCostFunctor {      MyScalarCostFunctor(double k): k_(k) {}      template <typename T>      bool operator()(const T* const x , const T* const y, T* e) const {        e[0] = T(k_) - x[0] * y[0] - x[1] * y[1];        return true;      }     private:      double k_;    };   Note that in the declaration of ``operator()`` the input parameters   ``x`` and ``y`` come first, and are passed as const pointers to arrays   of ``T``. If there were three input parameters, then the third input   parameter would come after ``y``. The output is always the last   parameter, and is also a pointer to an array. In the example above,   ``e`` is a scalar, so only ``e[0]`` is set.   Then given this class definition, the auto differentiated cost   function for it can be constructed as follows.   .. code-block:: c++    CostFunction* cost_function        = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(            new MyScalarCostFunctor(1.0));              ^  ^  ^                                                        |  |  |                            Dimension of residual ------+  |  |                            Dimension of x ----------------+  |                            Dimension of y -------------------+   In this example, there is usually an instance for each measurement   of ``k``.   In the instantiation above, the template parameters following   ``MyScalarCostFunction``, ``<1, 2, 2>`` describe the functor as   computing a 1-dimensional output from two arguments, both   2-dimensional.   :class:`AutoDiffCostFunction` also supports cost functions with a   runtime-determined number of residuals. For example:   .. code-block:: c++     CostFunction* cost_function         = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(             new CostFunctorWithDynamicNumResiduals(1.0),   ^     ^  ^             runtime_number_of_residuals); <----+           |     |  |                                                |           |     |  |                                                |           |     |  |               Actual number of residuals ------+           |     |  |               Indicate dynamic number of residuals --------+     |  |               Dimension of x ------------------------------------+  |               Dimension of y ---------------------------------------+   The framework can currently accommodate cost functions of up to 10   independent variables, and there is no limit on the dimensionality   of each of them.   **WARNING 1** Since the functor will get instantiated with   different types for ``T``, you must convert from other numeric   types to ``T`` before mixing computations with other variables   of type ``T``. In the example above, this is seen where instead of   using ``k_`` directly, ``k_`` is wrapped with ``T(k_)``.   **WARNING 2** A common beginner's error when first using   :class:`AutoDiffCostFunction` is to get the sizing wrong. In particular,   there is a tendency to set the template parameters to (dimension of   residual, number of parameters) instead of passing a dimension   parameter for *every parameter block*. In the example above, that   would be ``<MyScalarCostFunction, 1, 2>``, which is missing the 2   as the last template argument.:class:`DynamicAutoDiffCostFunction`====================================.. class:: DynamicAutoDiffCostFunction   :class:`AutoDiffCostFunction` requires that the number of parameter   blocks and their sizes be known at compile time. It also has an   upper limit of 10 parameter blocks. In a number of applications,   this is not enough e.g., Bezier curve fitting, Neural Network   training etc.     .. code-block:: c++      template <typename CostFunctor, int Stride = 4>      class DynamicAutoDiffCostFunction : public CostFunction {      };   In such cases :class:`DynamicAutoDiffCostFunction` can be   used. Like :class:`AutoDiffCostFunction` the user must define a   templated functor, but the signature of the functor differs   slightly. The expected interface for the cost functors is:     .. code-block:: c++       struct MyCostFunctor {         template<typename T>         bool operator()(T const* const* parameters, T* residuals) const {         }       }   Since the sizing of the parameters is done at runtime, you must   also specify the sizes after creating the dynamic autodiff cost   function. For example:     .. code-block:: c++       DynamicAutoDiffCostFunction<MyCostFunctor, 4>* cost_function =         new DynamicAutoDiffCostFunction<MyCostFunctor, 4>(           new MyCostFunctor());       cost_function->AddParameterBlock(5);       cost_function->AddParameterBlock(10);       cost_function->SetNumResiduals(21);   Under the hood, the implementation evaluates the cost function   multiple times, computing a small set of the derivatives (four by   default, controlled by the ``Stride`` template parameter) with each   pass. There is a performance tradeoff with the size of the passes;   Smaller sizes are more cache efficient but result in larger number   of passes, and larger stride lengths can destroy cache-locality   while reducing the number of passes over the cost function. The   optimal value depends on the number and sizes of the various   parameter blocks.   As a rule of thumb, try using :class:`AutoDiffCostFunction` before   you use :class:`DynamicAutoDiffCostFunction`.:class:`NumericDiffCostFunction`================================.. class:: NumericDiffCostFunction  In some cases, its not possible to define a templated cost functor,  for example when the evaluation of the residual involves a call to a  library function that you do not have control over.  In such a  situation, `numerical differentiation  <http://en.wikipedia.org/wiki/Numerical_differentiation>`_ can be  used.  .. NOTE ::    TODO(sameeragarwal): Add documentation for the constructor and for    NumericDiffOptions. Update DynamicNumericDiffOptions in a similar    manner.  .. code-block:: c++      template <typename CostFunctor,                NumericDiffMethodType method = CENTRAL,                int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC.                int N0,       // Number of parameters in block 0.                int N1 = 0,   // Number of parameters in block 1.                int N2 = 0,   // Number of parameters in block 2.                int N3 = 0,   // Number of parameters in block 3.                int N4 = 0,   // Number of parameters in block 4.                int N5 = 0,   // Number of parameters in block 5.                int N6 = 0,   // Number of parameters in block 6.                int N7 = 0,   // Number of parameters in block 7.                int N8 = 0,   // Number of parameters in block 8.                int N9 = 0>   // Number of parameters in block 9.      class NumericDiffCostFunction : public      SizedCostFunction<kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {      };  To get a numerically differentiated :class:`CostFunction`, you must  define a class with a ``operator()`` (a functor) that computes the  residuals. The functor must write the computed value in the last  argument (the only non-``const`` one) and return ``true`` to  indicate success.  Please see :class:`CostFunction` for details on  how the return value may be used to impose simple constraints on the  parameter block. e.g., an object of the form  .. code-block:: c++     struct ScalarFunctor {      public:       bool operator()(const double* const x1,                       const double* const x2,                       double* residuals) const;     }  For example, consider a scalar error :math:`e = k - x'y`, where both  :math:`x` and :math:`y` are two-dimensional column vector  parameters, the prime sign indicates transposition, and :math:`k` is  a constant. The form of this error, which is the difference between  a constant and an expression, is a common pattern in least squares  problems. For example, the value :math:`x'y` might be the model  expectation for a series of measurements, where there is an instance  of the cost function for each measurement :math:`k`.  To write an numerically-differentiable class:`CostFunction` for the  above model, first define the object  .. code-block::  c++     class MyScalarCostFunctor {       MyScalarCostFunctor(double k): k_(k) {}       bool operator()(const double* const x,                       const double* const y,                       double* residuals) const {         residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];         return true;       }      private:       double k_;     };  Note that in the declaration of ``operator()`` the input parameters  ``x`` and ``y`` come first, and are passed as const pointers to  arrays of ``double`` s. If there were three input parameters, then  the third input parameter would come after ``y``. The output is  always the last parameter, and is also a pointer to an array. In the  example above, the residual is a scalar, so only ``residuals[0]`` is  set.  Then given this class definition, the numerically differentiated  :class:`CostFunction` with central differences used for computing  the derivative can be constructed as follows.  .. code-block:: c++    CostFunction* cost_function        = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(            new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^                                                              |     |  |  |                                  Finite Differencing Scheme -+     |  |  |                                  Dimension of residual ------------+  |  |                                  Dimension of x ----------------------+  |                                  Dimension of y -------------------------+  In this example, there is usually an instance for each measurement  of `k`.  In the instantiation above, the template parameters following  ``MyScalarCostFunctor``, ``1, 2, 2``, describe the functor as  computing a 1-dimensional output from two arguments, both  2-dimensional.  NumericDiffCostFunction also supports cost functions with a  runtime-determined number of residuals. For example:   .. code-block:: c++     CostFunction* cost_function         = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(             new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^             TAKE_OWNERSHIP,                                            |     |  |             runtime_number_of_residuals); <----+                       |     |  |                                                |                       |     |  |                                                |                       |     |  |               Actual number of residuals ------+                       |     |  |               Indicate dynamic number of residuals --------------------+     |  |               Dimension of x ------------------------------------------------+  |               Dimension of y ---------------------------------------------------+  The framework can currently accommodate cost functions of up to 10  independent variables, and there is no limit on the dimensionality  of each of them.  There are three available numeric differentiation schemes in ceres-solver:  The ``FORWARD`` difference method, which approximates :math:`f'(x)`  by computing :math:`\frac{f(x+h)-f(x)}{h}`, computes the cost  function one additional time at :math:`x+h`. It is the fastest but  least accurate method.  The ``CENTRAL`` difference method is more accurate at the cost of  twice as many function evaluations than forward difference,  estimating :math:`f'(x)` by computing  :math:`\frac{f(x+h)-f(x-h)}{2h}`.  The ``RIDDERS`` difference method[Ridders]_ is an adaptive scheme  that estimates derivatives by performing multiple central  differences at varying scales. Specifically, the algorithm starts at  a certain :math:`h` and as the derivative is estimated, this step  size decreases.  To conserve function evaluations and estimate the  derivative error, the method performs Richardson extrapolations  between the tested step sizes.  The algorithm exhibits considerably  higher accuracy, but does so by additional evaluations of the cost  function.  Consider using ``CENTRAL`` differences to begin with. Based on the  results, either try forward difference to improve performance or  Ridders' method to improve accuracy.  **WARNING** A common beginner's error when first using  :class:`NumericDiffCostFunction` is to get the sizing wrong. In  particular, there is a tendency to set the template parameters to  (dimension of residual, number of parameters) instead of passing a  dimension parameter for *every parameter*. In the example above,  that would be ``<MyScalarCostFunctor, 1, 2>``, which is missing the  last ``2`` argument. Please be careful when setting the size  parameters.Numeric Differentiation & LocalParameterization-----------------------------------------------   If your cost function depends on a parameter block that must lie on   a manifold and the functor cannot be evaluated for values of that   parameter block not on the manifold then you may have problems   numerically differentiating such functors.   This is because numeric differentiation in Ceres is performed by   perturbing the individual coordinates of the parameter blocks that   a cost functor depends on. In doing so, we assume that the   parameter blocks live in an Euclidean space and ignore the   structure of manifold that they live As a result some of the   perturbations may not lie on the manifold corresponding to the   parameter block.   For example consider a four dimensional parameter block that is   interpreted as a unit Quaternion. Perturbing the coordinates of   this parameter block will violate the unit norm property of the   parameter block.   Fixing this problem requires that :class:`NumericDiffCostFunction`   be aware of the :class:`LocalParameterization` associated with each   parameter block and only generate perturbations in the local   tangent space of each parameter block.   For now this is not considered to be a serious enough problem to   warrant changing the :class:`NumericDiffCostFunction` API. Further,   in most cases it is relatively straightforward to project a point   off the manifold back onto the manifold before using it in the   functor. For example in case of the Quaternion, normalizing the   4-vector before using it does the trick.   **Alternate Interface**   For a variety of reasons, including compatibility with legacy code,   :class:`NumericDiffCostFunction` can also take   :class:`CostFunction` objects as input. The following describes   how.   To get a numerically differentiated cost function, define a   subclass of :class:`CostFunction` such that the   :func:`CostFunction::Evaluate` function ignores the ``jacobians``   parameter. The numeric differentiation wrapper will fill in the   jacobian parameter if necessary by repeatedly calling the   :func:`CostFunction::Evaluate` with small changes to the   appropriate parameters, and computing the slope. For performance,   the numeric differentiation wrapper class is templated on the   concrete cost function, even though it could be implemented only in   terms of the :class:`CostFunction` interface.   The numerically differentiated version of a cost function for a   cost function can be constructed as follows:   .. code-block:: c++     CostFunction* cost_function         = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(             new MyCostFunction(...), TAKE_OWNERSHIP);   where ``MyCostFunction`` has 1 residual and 2 parameter blocks with   sizes 4 and 8 respectively. Look at the tests for a more detailed   example.:class:`DynamicNumericDiffCostFunction`=======================================.. class:: DynamicNumericDiffCostFunction   Like :class:`AutoDiffCostFunction` :class:`NumericDiffCostFunction`   requires that the number of parameter blocks and their sizes be   known at compile time. It also has an upper limit of 10 parameter   blocks. In a number of applications, this is not enough.     .. code-block:: c++      template <typename CostFunctor, NumericDiffMethodType method = CENTRAL>      class DynamicNumericDiffCostFunction : public CostFunction {      };   In such cases when numeric differentiation is desired,   :class:`DynamicNumericDiffCostFunction` can be used.   Like :class:`NumericDiffCostFunction` the user must define a   functor, but the signature of the functor differs slightly. The   expected interface for the cost functors is:     .. code-block:: c++       struct MyCostFunctor {         bool operator()(double const* const* parameters, double* residuals) const {         }       }   Since the sizing of the parameters is done at runtime, you must   also specify the sizes after creating the dynamic numeric diff cost   function. For example:     .. code-block:: c++       DynamicNumericDiffCostFunction<MyCostFunctor>* cost_function =         new DynamicNumericDiffCostFunction<MyCostFunctor>(new MyCostFunctor);       cost_function->AddParameterBlock(5);       cost_function->AddParameterBlock(10);       cost_function->SetNumResiduals(21);   As a rule of thumb, try using :class:`NumericDiffCostFunction` before   you use :class:`DynamicNumericDiffCostFunction`.   **WARNING** The same caution about mixing local parameterizations   with numeric differentiation applies as is the case with   :class:`NumericDiffCostFunction`.:class:`CostFunctionToFunctor`==============================.. class:: CostFunctionToFunctor   :class:`CostFunctionToFunctor` is an adapter class that allows   users to use :class:`CostFunction` objects in templated functors   which are to be used for automatic differentiation. This allows   the user to seamlessly mix analytic, numeric and automatic   differentiation.   For example, let us assume that   .. code-block:: c++     class IntrinsicProjection : public SizedCostFunction<2, 5, 3> {       public:         IntrinsicProjection(const double* observation);         virtual bool Evaluate(double const* const* parameters,                               double* residuals,                               double** jacobians) const;     };   is a :class:`CostFunction` that implements the projection of a   point in its local coordinate system onto its image plane and   subtracts it from the observed point projection. It can compute its   residual and either via analytic or numerical differentiation can   compute its jacobians.   Now we would like to compose the action of this   :class:`CostFunction` with the action of camera extrinsics, i.e.,   rotation and translation. Say we have a templated function   .. code-block:: c++      template<typename T>      void RotateAndTranslatePoint(const T* rotation,                                   const T* translation,                                   const T* point,                                   T* result);   Then we can now do the following,   .. code-block:: c++    struct CameraProjection {      CameraProjection(double* observation)      : intrinsic_projection_(new IntrinsicProjection(observation)) {      }      template <typename T>      bool operator()(const T* rotation,                      const T* translation,                      const T* intrinsics,                      const T* point,                      T* residual) const {        T transformed_point[3];        RotateAndTranslatePoint(rotation, translation, point, transformed_point);        // Note that we call intrinsic_projection_, just like it was        // any other templated functor.        return intrinsic_projection_(intrinsics, transformed_point, residual);      }     private:      CostFunctionToFunctor<2,5,3> intrinsic_projection_;    };   Note that :class:`CostFunctionToFunctor` takes ownership of the   :class:`CostFunction` that was passed in to the constructor.   In the above example, we assumed that ``IntrinsicProjection`` is a   ``CostFunction`` capable of evaluating its value and its   derivatives. Suppose, if that were not the case and   ``IntrinsicProjection`` was defined as follows:   .. code-block:: c++    struct IntrinsicProjection      IntrinsicProjection(const double* observation) {        observation_[0] = observation[0];        observation_[1] = observation[1];      }      bool operator()(const double* calibration,                      const double* point,                      double* residuals) {        double projection[2];        ThirdPartyProjectionFunction(calibration, point, projection);        residuals[0] = observation_[0] - projection[0];        residuals[1] = observation_[1] - projection[1];        return true;      }     double observation_[2];    };  Here ``ThirdPartyProjectionFunction`` is some third party library  function that we have no control over. So this function can compute  its value and we would like to use numeric differentiation to  compute its derivatives. In this case we can use a combination of  ``NumericDiffCostFunction`` and ``CostFunctionToFunctor`` to get the  job done.  .. code-block:: c++   struct CameraProjection {     CameraProjection(double* observation)       intrinsic_projection_(         new NumericDiffCostFunction<IntrinsicProjection, CENTRAL, 2, 5, 3>(           new IntrinsicProjection(observation)) {     }     template <typename T>     bool operator()(const T* rotation,                     const T* translation,                     const T* intrinsics,                     const T* point,                     T* residuals) const {       T transformed_point[3];       RotateAndTranslatePoint(rotation, translation, point, transformed_point);       return intrinsic_projection_(intrinsics, transformed_point, residual);     }    private:     CostFunctionToFunctor<2,5,3> intrinsic_projection_;   };:class:`DynamicCostFunctionToFunctor`=====================================.. class:: DynamicCostFunctionToFunctor   :class:`DynamicCostFunctionToFunctor` provides the same functionality as   :class:`CostFunctionToFunctor` for cases where the number and size of the   parameter vectors and residuals are not known at compile-time. The API   provided by :class:`DynamicCostFunctionToFunctor` matches what would be   expected by :class:`DynamicAutoDiffCostFunction`, i.e. it provides a   templated functor of this form:   .. code-block:: c++    template<typename T>    bool operator()(T const* const* parameters, T* residuals) const;   Similar to the example given for :class:`CostFunctionToFunctor`, let us   assume that   .. code-block:: c++     class IntrinsicProjection : public CostFunction {       public:         IntrinsicProjection(const double* observation);         virtual bool Evaluate(double const* const* parameters,                               double* residuals,                               double** jacobians) const;     };   is a :class:`CostFunction` that projects a point in its local coordinate   system onto its image plane and subtracts it from the observed point   projection.   Using this :class:`CostFunction` in a templated functor would then look like   this:   .. code-block:: c++    struct CameraProjection {      CameraProjection(double* observation)          : intrinsic_projection_(new IntrinsicProjection(observation)) {      }      template <typename T>      bool operator()(T const* const* parameters,                      T* residual) const {        const T* rotation = parameters[0];        const T* translation = parameters[1];        const T* intrinsics = parameters[2];        const T* point = parameters[3];        T transformed_point[3];        RotateAndTranslatePoint(rotation, translation, point, transformed_point);        const T* projection_parameters[2];        projection_parameters[0] = intrinsics;        projection_parameters[1] = transformed_point;        return intrinsic_projection_(projection_parameters, residual);      }     private:      DynamicCostFunctionToFunctor intrinsic_projection_;    };   Like :class:`CostFunctionToFunctor`, :class:`DynamicCostFunctionToFunctor`   takes ownership of the :class:`CostFunction` that was passed in to the   constructor.:class:`ConditionedCostFunction`================================.. class:: ConditionedCostFunction   This class allows you to apply different conditioning to the residual   values of a wrapped cost function. An example where this is useful is   where you have an existing cost function that produces N values, but you   want the total cost to be something other than just the sum of these   squared values - maybe you want to apply a different scaling to some   values, to change their contribution to the cost.   Usage:   .. code-block:: c++       //  my_cost_function produces N residuals       CostFunction* my_cost_function = ...       CHECK_EQ(N, my_cost_function->num_residuals());       vector<CostFunction*> conditioners;       //  Make N 1x1 cost functions (1 parameter, 1 residual)       CostFunction* f_1 = ...       conditioners.push_back(f_1);       CostFunction* f_N = ...       conditioners.push_back(f_N);       ConditionedCostFunction* ccf =         new ConditionedCostFunction(my_cost_function, conditioners);   Now ``ccf`` 's ``residual[i]`` (i=0..N-1) will be passed though the   :math:`i^{\text{th}}` conditioner.   .. code-block:: c++      ccf_residual[i] = f_i(my_cost_function_residual[i])   and the Jacobian will be affected appropriately.:class:`GradientChecker`================================.. class:: GradientChecker    This class compares the Jacobians returned by a cost function against    derivatives estimated using finite differencing. It is meant as a tool for    unit testing, giving you more fine-grained control than the check_gradients    option in the solver options.    The condition enforced is that    .. math:: \forall{i,j}: \frac{J_{ij} - J'_{ij}}{max_{ij}(J_{ij} - J'_{ij})} < r    where :math:`J_{ij}` is the jacobian as computed by the supplied cost    function (by the user) multiplied by the local parameterization Jacobian,    :math:`J'_{ij}` is the jacobian as computed by finite differences,    multiplied by the local parameterization Jacobian as well, and :math:`r`    is the relative precision.   Usage:   .. code-block:: c++       //  my_cost_function takes two parameter blocks. The first has a local       //  parameterization associated with it.       CostFunction* my_cost_function = ...       LocalParameterization* my_parameterization = ...       NumericDiffOptions numeric_diff_options;       std::vector<LocalParameterization*> local_parameterizations;       local_parameterizations.push_back(my_parameterization);       local_parameterizations.push_back(NULL);       std::vector parameter1;       std::vector parameter2;       // Fill parameter 1 & 2 with test data...       std::vector<double*> parameter_blocks;       parameter_blocks.push_back(parameter1.data());       parameter_blocks.push_back(parameter2.data());       GradientChecker gradient_checker(my_cost_function,           local_parameterizations, numeric_diff_options);       GradientCheckResults results;       if (!gradient_checker.Probe(parameter_blocks.data(), 1e-9, &results) {         LOG(ERROR) << "An error has occurred:\n" << results.error_log;       }:class:`NormalPrior`====================.. class:: NormalPrior   .. code-block:: c++     class NormalPrior: public CostFunction {      public:       // Check that the number of rows in the vector b are the same as the       // number of columns in the matrix A, crash otherwise.       NormalPrior(const Matrix& A, const Vector& b);       virtual bool Evaluate(double const* const* parameters,                             double* residuals,                             double** jacobians) const;      };   Implements a cost function of the form   .. math::  cost(x) = ||A(x - b)||^2   where, the matrix :math:`A` and the vector :math:`b` are fixed and :math:`x`   is the variable. In case the user is interested in implementing a cost   function of the form  .. math::  cost(x) = (x - \mu)^T S^{-1} (x - \mu)  where, :math:`\mu` is a vector and :math:`S` is a covariance matrix,  then, :math:`A = S^{-1/2}`, i.e the matrix :math:`A` is the square  root of the inverse of the covariance, also known as the stiffness  matrix. There are however no restrictions on the shape of  :math:`A`. It is free to be rectangular, which would be the case if  the covariance matrix :math:`S` is rank deficient... _`section-loss_function`::class:`LossFunction`=====================.. class:: LossFunction   For least squares problems where the minimization may encounter   input terms that contain outliers, that is, completely bogus   measurements, it is important to use a loss function that reduces   their influence.   Consider a structure from motion problem. The unknowns are 3D   points and camera parameters, and the measurements are image   coordinates describing the expected reprojected position for a   point in a camera. For example, we want to model the geometry of a   street scene with fire hydrants and cars, observed by a moving   camera with unknown parameters, and the only 3D points we care   about are the pointy tippy-tops of the fire hydrants. Our magic   image processing algorithm, which is responsible for producing the   measurements that are input to Ceres, has found and matched all   such tippy-tops in all image frames, except that in one of the   frame it mistook a car's headlight for a hydrant. If we didn't do   anything special the residual for the erroneous measurement will   result in the entire solution getting pulled away from the optimum   to reduce the large error that would otherwise be attributed to the   wrong measurement.   Using a robust loss function, the cost for large residuals is   reduced. In the example above, this leads to outlier terms getting   down-weighted so they do not overly influence the final solution.   .. code-block:: c++    class LossFunction {     public:      virtual void Evaluate(double s, double out[3]) const = 0;    };   The key method is :func:`LossFunction::Evaluate`, which given a   non-negative scalar ``s``, computes   .. math:: out = \begin{bmatrix}\rho(s), & \rho'(s), & \rho''(s)\end{bmatrix}   Here the convention is that the contribution of a term to the cost   function is given by :math:`\frac{1}{2}\rho(s)`, where :math:`s   =\|f_i\|^2`. Calling the method with a negative value of :math:`s`   is an error and the implementations are not required to handle that   case.   Most sane choices of :math:`\rho` satisfy:   .. math::      \rho(0) &= 0\\      \rho'(0) &= 1\\      \rho'(s) &< 1 \text{ in the outlier region}\\      \rho''(s) &< 0 \text{ in the outlier region}   so that they mimic the squared cost for small residuals.   **Scaling**   Given one robustifier :math:`\rho(s)` one can change the length   scale at which robustification takes place, by adding a scale   factor :math:`a > 0` which gives us :math:`\rho(s,a) = a^2 \rho(s /   a^2)` and the first and second derivatives as :math:`\rho'(s /   a^2)` and :math:`(1 / a^2) \rho''(s / a^2)` respectively.   The reason for the appearance of squaring is that :math:`a` is in   the units of the residual vector norm whereas :math:`s` is a squared   norm. For applications it is more convenient to specify :math:`a` than   its square.Instances---------Ceres includes a number of predefined loss functions. For simplicitywe described their unscaled versions. The figure below illustratestheir shape graphically. More details can be found in``include/ceres/loss_function.h``... figure:: loss.png   :figwidth: 500px   :height: 400px   :align: center   Shape of the various common loss functions... class:: TrivialLoss      .. math:: \rho(s) = s.. class:: HuberLoss   .. math:: \rho(s) = \begin{cases} s & s \le 1\\ 2 \sqrt{s} - 1 & s > 1 \end{cases}.. class:: SoftLOneLoss   .. math:: \rho(s) = 2 (\sqrt{1+s} - 1).. class:: CauchyLoss   .. math:: \rho(s) = \log(1 + s).. class:: ArctanLoss   .. math:: \rho(s) = \arctan(s).. class:: TolerantLoss   .. math:: \rho(s,a,b) = b \log(1 + e^{(s - a) / b}) - b \log(1 + e^{-a / b}).. class:: ComposedLoss   Given two loss functions ``f`` and ``g``, implements the loss   function ``h(s) = f(g(s))``.   .. code-block:: c++      class ComposedLoss : public LossFunction {       public:        explicit ComposedLoss(const LossFunction* f,                              Ownership ownership_f,                              const LossFunction* g,                              Ownership ownership_g);      };.. class:: ScaledLoss   Sometimes you want to simply scale the output value of the   robustifier. For example, you might want to weight different error   terms differently (e.g., weight pixel reprojection errors   differently from terrain errors).   Given a loss function :math:`\rho(s)` and a scalar :math:`a`, :class:`ScaledLoss`   implements the function :math:`a \rho(s)`.   Since we treat a ``NULL`` Loss function as the Identity loss   function, :math:`rho` = ``NULL``: is a valid input and will result   in the input being scaled by :math:`a`. This provides a simple way   of implementing a scaled ResidualBlock... class:: LossFunctionWrapper   Sometimes after the optimization problem has been constructed, we   wish to mutate the scale of the loss function. For example, when   performing estimation from data which has substantial outliers,   convergence can be improved by starting out with a large scale,   optimizing the problem and then reducing the scale. This can have   better convergence behavior than just using a loss function with a   small scale.   This templated class allows the user to implement a loss function   whose scale can be mutated after an optimization problem has been   constructed, e.g,   .. code-block:: c++     Problem problem;     // Add parameter blocks     CostFunction* cost_function =         new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(             new UW_Camera_Mapper(feature_x, feature_y));     LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);     problem.AddResidualBlock(cost_function, loss_function, parameters);     Solver::Options options;     Solver::Summary summary;     Solve(options, &problem, &summary);     loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP);     Solve(options, &problem, &summary);Theory------Let us consider a problem with a single problem and a single parameterblock... math:: \min_x \frac{1}{2}\rho(f^2(x))Then, the robustified gradient and the Gauss-Newton Hessian are.. math::        g(x) &= \rho'J^\top(x)f(x)\\        H(x) &= J^\top(x)\left(\rho' + 2 \rho''f(x)f^\top(x)\right)J(x)where the terms involving the second derivatives of :math:`f(x)` havebeen ignored. Note that :math:`H(x)` is indefinite if:math:`\rho''f(x)^\top f(x) + \frac{1}{2}\rho' < 0`. If this is notthe case, then its possible to re-weight the residual and the Jacobianmatrix such that the corresponding linear least squares problem forthe robustified Gauss-Newton step.Let :math:`\alpha` be a root of.. math:: \frac{1}{2}\alpha^2 - \alpha - \frac{\rho''}{\rho'}\|f(x)\|^2 = 0.Then, define the rescaled residual and Jacobian as.. math::        \tilde{f}(x) &= \frac{\sqrt{\rho'}}{1 - \alpha} f(x)\\        \tilde{J}(x) &= \sqrt{\rho'}\left(1 - \alpha                        \frac{f(x)f^\top(x)}{\left\|f(x)\right\|^2} \right)J(x)In the case :math:`2 \rho''\left\|f(x)\right\|^2 + \rho' \lesssim 0`,we limit :math:`\alpha \le 1- \epsilon` for some small:math:`\epsilon`. For more details see [Triggs]_.With this simple rescaling, one can use any Jacobian based non-linearleast squares algorithm to robustified non-linear least squaresproblems.:class:`LocalParameterization`==============================.. class:: LocalParameterization   .. code-block:: c++     class LocalParameterization {      public:       virtual ~LocalParameterization() {}       virtual bool Plus(const double* x,                         const double* delta,                         double* x_plus_delta) const = 0;       virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;       virtual bool MultiplyByJacobian(const double* x,                                       const int num_rows,                                       const double* global_matrix,                                       double* local_matrix) const;       virtual int GlobalSize() const = 0;       virtual int LocalSize() const = 0;     };   Sometimes the parameters :math:`x` can overparameterize a   problem. In that case it is desirable to choose a parameterization   to remove the null directions of the cost. More generally, if   :math:`x` lies on a manifold of a smaller dimension than the   ambient space that it is embedded in, then it is numerically and   computationally more effective to optimize it using a   parameterization that lives in the tangent space of that manifold   at each point.   For example, a sphere in three dimensions is a two dimensional   manifold, embedded in a three dimensional space. At each point on   the sphere, the plane tangent to it defines a two dimensional   tangent space. For a cost function defined on this sphere, given a   point :math:`x`, moving in the direction normal to the sphere at   that point is not useful. Thus a better way to parameterize a point   on a sphere is to optimize over two dimensional vector   :math:`\Delta x` in the tangent space at the point on the sphere   point and then "move" to the point :math:`x + \Delta x`, where the   move operation involves projecting back onto the sphere. Doing so   removes a redundant dimension from the optimization, making it   numerically more robust and efficient.   More generally we can define a function   .. math:: x' = \boxplus(x, \Delta x),   where :math:`x'` has the same size as :math:`x`, and :math:`\Delta   x` is of size less than or equal to :math:`x`. The function   :math:`\boxplus`, generalizes the definition of vector   addition. Thus it satisfies the identity   .. math:: \boxplus(x, 0) = x,\quad \forall x.   Instances of :class:`LocalParameterization` implement the   :math:`\boxplus` operation and its derivative with respect to   :math:`\Delta x` at :math:`\Delta x = 0`... function:: int LocalParameterization::GlobalSize()   The dimension of the ambient space in which the parameter block   :math:`x` lives... function:: int LocalParameterization::LocalSize()   The size of the tangent space   that :math:`\Delta x` lives in... function:: bool LocalParameterization::Plus(const double* x, const double* delta, double* x_plus_delta) const    :func:`LocalParameterization::Plus` implements :math:`\boxplus(x,\Delta x)`... function:: bool LocalParameterization::ComputeJacobian(const double* x, double* jacobian) const   Computes the Jacobian matrix   .. math:: J = \left . \frac{\partial }{\partial \Delta x} \boxplus(x,\Delta x)\right|_{\Delta x = 0}   in row major form... function:: bool MultiplyByJacobian(const double* x, const int num_rows, const double* global_matrix, double* local_matrix) const   local_matrix = global_matrix * jacobian   global_matrix is a num_rows x GlobalSize  row major matrix.   local_matrix is a num_rows x LocalSize row major matrix.   jacobian is the matrix returned by :func:`LocalParameterization::ComputeJacobian` at :math:`x`.   This is only used by GradientProblem. For most normal uses, it is   okay to use the default implementation.Instances---------.. class:: IdentityParameterization   A trivial version of :math:`\boxplus` is when :math:`\Delta x` is   of the same size as :math:`x` and   .. math::  \boxplus(x, \Delta x) = x + \Delta x.. class:: SubsetParameterization   A more interesting case if :math:`x` is a two dimensional vector,   and the user wishes to hold the first coordinate constant. Then,   :math:`\Delta x` is a scalar and :math:`\boxplus` is defined as   .. math::      \boxplus(x, \Delta x) = x + \left[ \begin{array}{c} 0 \\ 1                                  \end{array} \right] \Delta x   :class:`SubsetParameterization` generalizes this construction to   hold any part of a parameter block constant... class:: QuaternionParameterization   Another example that occurs commonly in Structure from Motion   problems is when camera rotations are parameterized using a   quaternion. There, it is useful only to make updates orthogonal to   that 4-vector defining the quaternion. One way to do this is to let   :math:`\Delta x` be a 3 dimensional vector and define   :math:`\boxplus` to be    .. math:: \boxplus(x, \Delta x) = \left[ \cos(|\Delta x|), \frac{\sin\left(|\Delta x|\right)}{|\Delta x|} \Delta x \right] * x      :label: quaternion   The multiplication between the two 4-vectors on the right hand side   is the standard quaternion   product. :class:`QuaternionParameterization` is an implementation   of :eq:`quaternion`... class:: EigenQuaternionParameterization   Eigen uses a different internal memory layout for the elements of the   quaternion than what is commonly used. Specifically, Eigen stores the   elements in memory as [x, y, z, w] where the real part is last   whereas it is typically stored first. Note, when creating an Eigen   quaternion through the constructor the elements are accepted in w, x,   y, z order. Since Ceres operates on parameter blocks which are raw   double pointers this difference is important and requires a different   parameterization. :class:`EigenQuaternionParameterization` uses the   same update as :class:`QuaternionParameterization` but takes into   account Eigen's internal memory element ordering... class:: HomogeneousVectorParameterization   In computer vision, homogeneous vectors are commonly used to   represent entities in projective geometry such as points in   projective space. One example where it is useful to use this   over-parameterization is in representing points whose triangulation   is ill-conditioned. Here it is advantageous to use homogeneous   vectors, instead of an Euclidean vector, because it can represent   points at infinity.   When using homogeneous vectors it is useful to only make updates   orthogonal to that :math:`n`-vector defining the homogeneous   vector [HartleyZisserman]_. One way to do this is to let :math:`\Delta x`   be a :math:`n-1` dimensional vector and define :math:`\boxplus` to be    .. math:: \boxplus(x, \Delta x) = \left[ \frac{\sin\left(0.5 |\Delta x|\right)}{|\Delta x|} \Delta x, \cos(0.5 |\Delta x|) \right] * x   The multiplication between the two vectors on the right hand side   is defined as an operator which applies the update orthogonal to   :math:`x` to remain on the sphere. Note, it is assumed that   last element of :math:`x` is the scalar component of the homogeneous   vector... class:: ProductParameterization   Consider an optimization problem over the space of rigid   transformations :math:`SE(3)`, which is the Cartesian product of   :math:`SO(3)` and :math:`\mathbb{R}^3`. Suppose you are using   Quaternions to represent the rotation, Ceres ships with a local   parameterization for that and :math:`\mathbb{R}^3` requires no, or   :class:`IdentityParameterization` parameterization. So how do we   construct a local parameterization for a parameter block a rigid   transformation?   In cases, where a parameter block is the Cartesian product of a   number of manifolds and you have the local parameterization of the   individual manifolds available, :class:`ProductParameterization`   can be used to construct a local parameterization of the cartesian   product. For the case of the rigid transformation, where say you   have a parameter block of size 7, where the first four entries   represent the rotation as a quaternion, a local parameterization   can be constructed as   .. code-block:: c++     ProductParameterization se3_param(new QuaternionParameterization(),                                       new IdentityTransformation(3));:class:`AutoDiffLocalParameterization`======================================.. class:: AutoDiffLocalParameterization  :class:`AutoDiffLocalParameterization` does for  :class:`LocalParameterization` what :class:`AutoDiffCostFunction`  does for :class:`CostFunction`. It allows the user to define a  templated functor that implements the  :func:`LocalParameterization::Plus` operation and it uses automatic  differentiation to implement the computation of the Jacobian.  To get an auto differentiated local parameterization, you must  define a class with a templated operator() (a functor) that computes     .. math:: x' = \boxplus(x, \Delta x),  For example, Quaternions have a three dimensional local  parameterization. Its plus operation can be implemented as (taken  from `internal/ceres/autodiff_local_parameterization_test.cc  <https://ceres-solver.googlesource.com/ceres-solver/+/master/internal/ceres/autodiff_local_parameterization_test.cc>`_  )    .. code-block:: c++      struct QuaternionPlus {        template<typename T>        bool operator()(const T* x, const T* delta, T* x_plus_delta) const {          const T squared_norm_delta =              delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];          T q_delta[4];          if (squared_norm_delta > T(0.0)) {            T norm_delta = sqrt(squared_norm_delta);            const T sin_delta_by_delta = sin(norm_delta) / norm_delta;            q_delta[0] = cos(norm_delta);            q_delta[1] = sin_delta_by_delta * delta[0];            q_delta[2] = sin_delta_by_delta * delta[1];            q_delta[3] = sin_delta_by_delta * delta[2];          } else {            // We do not just use q_delta = [1,0,0,0] here because that is a            // constant and when used for automatic differentiation will            // lead to a zero derivative. Instead we take a first order            // approximation and evaluate it at zero.            q_delta[0] = T(1.0);            q_delta[1] = delta[0];            q_delta[2] = delta[1];            q_delta[3] = delta[2];          }          Quaternionproduct(q_delta, x, x_plus_delta);          return true;        }      };  Given this struct, the auto differentiated local  parameterization can now be constructed as  .. code-block:: c++     LocalParameterization* local_parameterization =         new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>;                                                           |  |                                Global Size ---------------+  |                                Local Size -------------------+  **WARNING:** Since the functor will get instantiated with different  types for ``T``, you must to convert from other numeric types to  ``T`` before mixing computations with other variables of type  ``T``. In the example above, this is seen where instead of using  ``k_`` directly, ``k_`` is wrapped with ``T(k_)``.:class:`Problem`================.. class:: Problem   :class:`Problem` holds the robustified bounds constrained   non-linear least squares problem :eq:`ceresproblem`. To create a   least squares problem, use the :func:`Problem::AddResidualBlock`   and :func:`Problem::AddParameterBlock` methods.   For example a problem containing 3 parameter blocks of sizes 3, 4   and 5 respectively and two residual blocks of size 2 and 6:   .. code-block:: c++     double x1[] = { 1.0, 2.0, 3.0 };     double x2[] = { 1.0, 2.0, 3.0, 5.0 };     double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };     Problem problem;     problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);     problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);   :func:`Problem::AddResidualBlock` as the name implies, adds a   residual block to the problem. It adds a :class:`CostFunction`, an   optional :class:`LossFunction` and connects the   :class:`CostFunction` to a set of parameter block.   The cost function carries with it information about the sizes of   the parameter blocks it expects. The function checks that these   match the sizes of the parameter blocks listed in   ``parameter_blocks``. The program aborts if a mismatch is   detected. ``loss_function`` can be ``NULL``, in which case the cost   of the term is just the squared norm of the residuals.   The user has the option of explicitly adding the parameter blocks   using :func:`Problem::AddParameterBlock`. This causes additional   correctness checking; however, :func:`Problem::AddResidualBlock`   implicitly adds the parameter blocks if they are not present, so   calling :func:`Problem::AddParameterBlock` explicitly is not   required.   :func:`Problem::AddParameterBlock` explicitly adds a parameter   block to the :class:`Problem`. Optionally it allows the user to   associate a :class:`LocalParameterization` object with the   parameter block too. Repeated calls with the same arguments are   ignored. Repeated calls with the same double pointer but a   different size results in undefined behavior.   You can set any parameter block to be constant using   :func:`Problem::SetParameterBlockConstant` and undo this using   :func:`SetParameterBlockVariable`.   In fact you can set any number of parameter blocks to be constant,   and Ceres is smart enough to figure out what part of the problem   you have constructed depends on the parameter blocks that are free   to change and only spends time solving it. So for example if you   constructed a problem with a million parameter blocks and 2 million   residual blocks, but then set all but one parameter blocks to be   constant and say only 10 residual blocks depend on this one   non-constant parameter block. Then the computational effort Ceres   spends in solving this problem will be the same if you had defined   a problem with one parameter block and 10 residual blocks.   **Ownership**   :class:`Problem` by default takes ownership of the   ``cost_function``, ``loss_function`` and ``local_parameterization``   pointers. These objects remain live for the life of the   :class:`Problem`. If the user wishes to keep control over the   destruction of these objects, then they can do this by setting the   corresponding enums in the :class:`Problem::Options` struct.   Note that even though the Problem takes ownership of ``cost_function``   and ``loss_function``, it does not preclude the user from re-using   them in another residual block. The destructor takes care to call   delete on each ``cost_function`` or ``loss_function`` pointer only   once, regardless of how many residual blocks refer to them... function:: ResidualBlockId Problem::AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, const vector<double*> parameter_blocks)   Add a residual block to the overall cost function. The cost   function carries with it information about the sizes of the   parameter blocks it expects. The function checks that these match   the sizes of the parameter blocks listed in parameter_blocks. The   program aborts if a mismatch is detected. loss_function can be   NULL, in which case the cost of the term is just the squared norm   of the residuals.   The user has the option of explicitly adding the parameter blocks   using AddParameterBlock. This causes additional correctness   checking; however, AddResidualBlock implicitly adds the parameter   blocks if they are not present, so calling AddParameterBlock   explicitly is not required.   The Problem object by default takes ownership of the   cost_function and loss_function pointers. These objects remain   live for the life of the Problem object. If the user wishes to   keep control over the destruction of these objects, then they can   do this by setting the corresponding enums in the Options struct.   Note: Even though the Problem takes ownership of cost_function   and loss_function, it does not preclude the user from re-using   them in another residual block. The destructor takes care to call   delete on each cost_function or loss_function pointer only once,   regardless of how many residual blocks refer to them.   Example usage:   .. code-block:: c++      double x1[] = {1.0, 2.0, 3.0};      double x2[] = {1.0, 2.0, 5.0, 6.0};      double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};      Problem problem;      problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);      problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);.. function:: void Problem::AddParameterBlock(double* values, int size, LocalParameterization* local_parameterization)   Add a parameter block with appropriate size to the problem.   Repeated calls with the same arguments are ignored. Repeated calls   with the same double pointer but a different size results in   undefined behavior... function:: void Problem::AddParameterBlock(double* values, int size)   Add a parameter block with appropriate size and parameterization to   the problem. Repeated calls with the same arguments are   ignored. Repeated calls with the same double pointer but a   different size results in undefined behavior... function:: void Problem::RemoveResidualBlock(ResidualBlockId residual_block)   Remove a residual block from the problem. Any parameters that the residual   block depends on are not removed. The cost and loss functions for the   residual block will not get deleted immediately; won't happen until the   problem itself is deleted.  If Problem::Options::enable_fast_removal is   true, then the removal is fast (almost constant time). Otherwise, removing a   residual block will incur a scan of the entire Problem object to verify that   the residual_block represents a valid residual in the problem.   **WARNING:** Removing a residual or parameter block will destroy   the implicit ordering, rendering the jacobian or residuals returned   from the solver uninterpretable. If you depend on the evaluated   jacobian, do not use remove! This may change in a future release.   Hold the indicated parameter block constant during optimization... function:: void Problem::RemoveParameterBlock(double* values)   Remove a parameter block from the problem. The parameterization of   the parameter block, if it exists, will persist until the deletion   of the problem (similar to cost/loss functions in residual block   removal). Any residual blocks that depend on the parameter are also   removed, as described above in RemoveResidualBlock().  If   Problem::Options::enable_fast_removal is true, then   the removal is fast (almost constant time). Otherwise, removing a   parameter block will incur a scan of the entire Problem object.   **WARNING:** Removing a residual or parameter block will destroy   the implicit ordering, rendering the jacobian or residuals returned   from the solver uninterpretable. If you depend on the evaluated   jacobian, do not use remove! This may change in a future release... function:: void Problem::SetParameterBlockConstant(double* values)   Hold the indicated parameter block constant during optimization... function:: void Problem::SetParameterBlockVariable(double* values)   Allow the indicated parameter to vary during optimization... function:: void Problem::SetParameterization(double* values, LocalParameterization* local_parameterization)   Set the local parameterization for one of the parameter blocks.   The local_parameterization is owned by the Problem by default. It   is acceptable to set the same parameterization for multiple   parameters; the destructor is careful to delete local   parameterizations only once. The local parameterization can only be   set once per parameter, and cannot be changed once set... function:: LocalParameterization* Problem::GetParameterization(double* values) const   Get the local parameterization object associated with this   parameter block. If there is no parameterization object associated   then `NULL` is returned.. function:: void Problem::SetParameterLowerBound(double* values, int index, double lower_bound)   Set the lower bound for the parameter at position `index` in the   parameter block corresponding to `values`. By default the lower   bound is :math:`-\infty`... function:: void Problem::SetParameterUpperBound(double* values, int index, double upper_bound)   Set the upper bound for the parameter at position `index` in the   parameter block corresponding to `values`. By default the value is   :math:`\infty`... function:: int Problem::NumParameterBlocks() const   Number of parameter blocks in the problem. Always equals   parameter_blocks().size() and parameter_block_sizes().size()... function:: int Problem::NumParameters() const   The size of the parameter vector obtained by summing over the sizes   of all the parameter blocks... function:: int Problem::NumResidualBlocks() const   Number of residual blocks in the problem. Always equals   residual_blocks().size()... function:: int Problem::NumResiduals() const   The size of the residual vector obtained by summing over the sizes   of all of the residual blocks... function:: int Problem::ParameterBlockSize(const double* values) const   The size of the parameter block... function:: int Problem::ParameterBlockLocalSize(const double* values) const   The size of local parameterization for the parameter block. If   there is no local parameterization associated with this parameter   block, then ``ParameterBlockLocalSize`` = ``ParameterBlockSize``... function:: bool Problem::HasParameterBlock(const double* values) const   Is the given parameter block present in the problem or not?.. function:: void Problem::GetParameterBlocks(vector<double*>* parameter_blocks) const   Fills the passed ``parameter_blocks`` vector with pointers to the   parameter blocks currently in the problem. After this call,   ``parameter_block.size() == NumParameterBlocks``... function:: void Problem::GetResidualBlocks(vector<ResidualBlockId>* residual_blocks) const   Fills the passed `residual_blocks` vector with pointers to the   residual blocks currently in the problem. After this call,   `residual_blocks.size() == NumResidualBlocks`... function:: void Problem::GetParameterBlocksForResidualBlock(const ResidualBlockId residual_block, vector<double*>* parameter_blocks) const   Get all the parameter blocks that depend on the given residual   block... function:: void Problem::GetResidualBlocksForParameterBlock(const double* values, vector<ResidualBlockId>* residual_blocks) const   Get all the residual blocks that depend on the given parameter   block.   If `Problem::Options::enable_fast_removal` is   `true`, then getting the residual blocks is fast and depends only   on the number of residual blocks. Otherwise, getting the residual   blocks for a parameter block will incur a scan of the entire   :class:`Problem` object... function:: const CostFunction* GetCostFunctionForResidualBlock(const ResidualBlockId residual_block) const   Get the :class:`CostFunction` for the given residual block... function:: const LossFunction* GetLossFunctionForResidualBlock(const ResidualBlockId residual_block) const   Get the :class:`LossFunction` for the given residual block... function:: bool Problem::Evaluate(const Problem::EvaluateOptions& options, double* cost, vector<double>* residuals, vector<double>* gradient, CRSMatrix* jacobian)   Evaluate a :class:`Problem`. Any of the output pointers can be   `NULL`. Which residual blocks and parameter blocks are used is   controlled by the :class:`Problem::EvaluateOptions` struct below.   .. NOTE::      The evaluation will use the values stored in the memory      locations pointed to by the parameter block pointers used at the      time of the construction of the problem, for example in the      following code:      .. code-block:: c++        Problem problem;        double x = 1;        problem.Add(new MyCostFunction, NULL, &x);        double cost = 0.0;        problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);      The cost is evaluated at `x = 1`. If you wish to evaluate the      problem at `x = 2`, then      .. code-block:: c++         x = 2;         problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);      is the way to do so.   .. NOTE::      If no local parameterizations are used, then the size of      the gradient vector is the sum of the sizes of all the parameter      blocks. If a parameter block has a local parameterization, then      it contributes "LocalSize" entries to the gradient vector.   .. NOTE::      This function cannot be called while the problem is being      solved, for example it cannot be called from an      :class:`IterationCallback` at the end of an iteration during a      solve... class:: Problem::EvaluateOptions   Options struct that is used to control :func:`Problem::Evaluate`... member:: vector<double*> Problem::EvaluateOptions::parameter_blocks   The set of parameter blocks for which evaluation should be   performed. This vector determines the order in which parameter   blocks occur in the gradient vector and in the columns of the   jacobian matrix. If parameter_blocks is empty, then it is assumed   to be equal to a vector containing ALL the parameter   blocks. Generally speaking the ordering of the parameter blocks in   this case depends on the order in which they were added to the   problem and whether or not the user removed any parameter blocks.   **NOTE** This vector should contain the same pointers as the ones   used to add parameter blocks to the Problem. These parameter block   should NOT point to new memory locations. Bad things will happen if   you do... member:: vector<ResidualBlockId> Problem::EvaluateOptions::residual_blocks   The set of residual blocks for which evaluation should be   performed. This vector determines the order in which the residuals   occur, and how the rows of the jacobian are ordered. If   residual_blocks is empty, then it is assumed to be equal to the   vector containing all the parameter blocks.``rotation.h``==============Many applications of Ceres Solver involve optimization problems wheresome of the variables correspond to rotations. To ease the pain ofwork with the various representations of rotations (angle-axis,quaternion and matrix) we provide a handy set of templatedfunctions. These functions are templated so that the user can use themwithin Ceres Solver's automatic differentiation framework... function:: template <typename T> void AngleAxisToQuaternion(T const* angle_axis, T* quaternion)   Convert a value in combined axis-angle representation to a   quaternion.   The value ``angle_axis`` is a triple whose norm is an angle in radians,   and whose direction is aligned with the axis of rotation, and   ``quaternion`` is a 4-tuple that will contain the resulting quaternion... function::  template <typename T> void QuaternionToAngleAxis(T const* quaternion, T* angle_axis)   Convert a quaternion to the equivalent combined axis-angle   representation.   The value ``quaternion`` must be a unit quaternion - it is not   normalized first, and ``angle_axis`` will be filled with a value   whose norm is the angle of rotation in radians, and whose direction   is the axis of rotation... function:: template <typename T, int row_stride, int col_stride> void RotationMatrixToAngleAxis(const MatrixAdapter<const T, row_stride, col_stride>& R, T * angle_axis).. function:: template <typename T, int row_stride, int col_stride> void AngleAxisToRotationMatrix(T const * angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R).. function:: template <typename T> void RotationMatrixToAngleAxis(T const * R, T * angle_axis).. function:: template <typename T> void AngleAxisToRotationMatrix(T const * angle_axis, T * R)   Conversions between 3x3 rotation matrix with given column and row strides and   axis-angle rotation representations. The functions that take a pointer to T instead   of a MatrixAdapter assume a column major representation with unit row stride and a column stride of 3... function:: template <typename T, int row_stride, int col_stride> void EulerAnglesToRotationMatrix(const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R).. function:: template <typename T> void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R)   Conversions between 3x3 rotation matrix with given column and row strides and   Euler angle (in degrees) rotation representations.   The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}   axes, respectively.  They are applied in that same order, so the   total rotation R is Rz * Ry * Rx.   The function that takes a pointer to T as the rotation matrix assumes a row   major representation with unit column stride and a row stride of 3.   The additional parameter row_stride is required to be 3... function:: template <typename T, int row_stride, int col_stride> void QuaternionToScaledRotation(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R).. function:: template <typename T> void QuaternionToScaledRotation(const T q[4], T R[3 * 3])   Convert a 4-vector to a 3x3 scaled rotation matrix.   The choice of rotation is such that the quaternion   :math:`\begin{bmatrix} 1 &0 &0 &0\end{bmatrix}` goes to an identity   matrix and for small :math:`a, b, c` the quaternion   :math:`\begin{bmatrix}1 &a &b &c\end{bmatrix}` goes to the matrix   .. math::     I + 2 \begin{bmatrix} 0 & -c & b \\ c & 0 & -a\\ -b & a & 0           \end{bmatrix} + O(q^2)   which corresponds to a Rodrigues approximation, the last matrix   being the cross-product matrix of :math:`\begin{bmatrix} a& b&   c\end{bmatrix}`. Together with the property that :math:`R(q1 * q2)   = R(q1) * R(q2)` this uniquely defines the mapping from :math:`q` to   :math:`R`.   In the function that accepts a pointer to T instead of a MatrixAdapter,   the rotation matrix ``R`` is a row-major matrix with unit column stride   and a row stride of 3.   No normalization of the quaternion is performed, i.e.   :math:`R = \|q\|^2  Q`, where :math:`Q` is an orthonormal matrix   such that :math:`\det(Q) = 1` and :math:`Q*Q' = I`... function:: template <typename T> void QuaternionToRotation(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R).. function:: template <typename T> void QuaternionToRotation(const T q[4], T R[3 * 3])   Same as above except that the rotation matrix is normalized by the   Frobenius norm, so that :math:`R R' = I` (and :math:`\det(R) = 1`)... function:: template <typename T> void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3])   Rotates a point pt by a quaternion q:   .. math:: \text{result} = R(q)  \text{pt}   Assumes the quaternion is unit norm. If you pass in a quaternion   with :math:`|q|^2 = 2` then you WILL NOT get back 2 times the   result you get for a unit quaternion... function:: template <typename T> void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3])   With this function you do not need to assume that :math:`q` has unit norm.   It does assume that the norm is non-zero... function:: template <typename T> void QuaternionProduct(const T z[4], const T w[4], T zw[4])   .. math:: zw = z * w   where :math:`*` is the Quaternion product between 4-vectors... function:: template <typename T> void CrossProduct(const T x[3], const T y[3], T x_cross_y[3])   .. math:: \text{x_cross_y} = x \times y.. function:: template <typename T> void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3])   .. math:: y = R(\text{angle_axis}) xCubic Interpolation===================Optimization problems often involve functions that are given in theform of a table of values, for example an image. Evaluating thesefunctions and their derivatives requires interpolating thesevalues. Interpolating tabulated functions is a vast area of researchand there are a lot of libraries which implement a variety ofinterpolation schemes. However, using them within the automaticdifferentiation framework in Ceres is quite painful. To this end,Ceres provides the ability to interpolate one dimensional and twodimensional tabular functions.The one dimensional interpolation is based on the Cubic HermiteSpline, also known as the Catmull-Rom Spline. This produces a firstorder differentiable interpolating function. The two dimensionalinterpolation scheme is a generalization of the one dimensional schemewhere the interpolating function is assumed to be separable in the twodimensions,More details of the construction can be found `Linear Methods forImage Interpolation <http://www.ipol.im/pub/art/2011/g_lmii/>`_ byPascal Getreuer... class:: CubicInterpolatorGiven as input an infinite one dimensional grid, which provides thefollowing interface... code::  struct Grid1D {    enum { DATA_DIMENSION = 2; };    void GetValue(int n, double* f) const;  };Where, ``GetValue`` gives us the value of a function :math:`f`(possibly vector valued) for any integer :math:`n` and the enum``DATA_DIMENSION`` indicates the dimensionality of the function beinginterpolated. For example if you are interpolating rotations inaxis-angle format over time, then ``DATA_DIMENSION = 3``.:class:`CubicInterpolator` uses Cubic Hermite splines to produce asmooth approximation to it that can be used to evaluate the:math:`f(x)` and :math:`f'(x)` at any point on the real numberline. For example, the following code interpolates an array of fournumbers... code::  const double data[] = {1.0, 2.0, 5.0, 6.0};  Grid1D<double, 1> array(x, 0, 4);  CubicInterpolator interpolator(array);  double f, dfdx;  interpolator.Evaluate(1.5, &f, &dfdx);In the above code we use ``Grid1D`` a templated helper class thatallows easy interfacing between ``C++`` arrays and:class:`CubicInterpolator`.``Grid1D`` supports vector valued functions where the variouscoordinates of the function can be interleaved or stacked. It alsoallows the use of any numeric type as input, as long as it can besafely cast to a double... class:: BiCubicInterpolatorGiven as input an infinite two dimensional grid, which provides thefollowing interface:.. code::  struct Grid2D {    enum { DATA_DIMENSION = 2 };    void GetValue(int row, int col, double* f) const;  };Where, ``GetValue`` gives us the value of a function :math:`f`(possibly vector valued) for any pair of integers :code:`row` and:code:`col` and the enum ``DATA_DIMENSION`` indicates thedimensionality of the function being interpolated. For example if youare interpolating a color image with three channels (Red, Green &Blue), then ``DATA_DIMENSION = 3``.:class:`BiCubicInterpolator` uses the cubic convolution interpolationalgorithm of R. Keys [Keys]_, to produce a smooth approximation to itthat can be used to evaluate the :math:`f(r,c)`, :math:`\frac{\partialf(r,c)}{\partial r}` and :math:`\frac{\partial f(r,c)}{\partial c}` atany any point in the real plane.For example the following code interpolates a two dimensional array... code::   const double data[] = {1.0, 3.0, -1.0, 4.0,                          3.6, 2.1,  4.2, 2.0,                          2.0, 1.0,  3.1, 5.2};   Grid2D<double, 1>  array(data, 0, 3, 0, 4);   BiCubicInterpolator interpolator(array);   double f, dfdr, dfdc;   interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc);In the above code, the templated helper class ``Grid2D`` is used tomake a ``C++`` array look like a two dimensional table to:class:`BiCubicInterpolator`.``Grid2D`` supports row or column major layouts. It also supportsvector valued functions where the individual coordinates of thefunction may be interleaved or stacked. It also allows the use of anynumeric type as input, as long as it can be safely cast to double.
 |