| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: strandmark@google.com (Petter Strandmark)#include "ceres/gradient_problem_solver.h"#include "ceres/gradient_problem.h"#include "gtest/gtest.h"namespace ceres {namespace internal {// Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function .class Rosenbrock : public ceres::FirstOrderFunction { public:  virtual ~Rosenbrock() {}  bool Evaluate(const double* parameters,                double* cost,                double* gradient) const final {    const double x = parameters[0];    const double y = parameters[1];    cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);    if (gradient != NULL) {      gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;      gradient[1] = 200.0 * (y - x * x);    }    return true;  }  int NumParameters() const final { return 2; }};TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) {  const double expected_tolerance = 1e-9;  double parameters[2] = {-1.2, 0.0};  ceres::GradientProblemSolver::Options options;  ceres::GradientProblemSolver::Summary summary;  ceres::GradientProblem problem(new Rosenbrock());  ceres::Solve(options, problem, parameters, &summary);  EXPECT_EQ(CONVERGENCE, summary.termination_type);  EXPECT_NEAR(1.0, parameters[0], expected_tolerance);  EXPECT_NEAR(1.0, parameters[1], expected_tolerance);}class QuadraticFunction : public ceres::FirstOrderFunction {  virtual ~QuadraticFunction() {}  bool Evaluate(const double* parameters,                double* cost,                double* gradient) const final {    const double x = parameters[0];    *cost = 0.5 * (5.0 - x) * (5.0 - x);    if (gradient != NULL) {      gradient[0] = x - 5.0;    }    return true;  }  int NumParameters() const final { return 1; }};struct RememberingCallback : public IterationCallback {  explicit RememberingCallback(double* x) : calls(0), x(x) {}  virtual ~RememberingCallback() {}  CallbackReturnType operator()(const IterationSummary& summary) final {    x_values.push_back(*x);    return SOLVER_CONTINUE;  }  int calls;  double* x;  std::vector<double> x_values;};TEST(Solver, UpdateStateEveryIterationOption) {  double x = 50.0;  const double original_x = x;  ceres::GradientProblem problem(new QuadraticFunction);  ceres::GradientProblemSolver::Options options;  RememberingCallback callback(&x);  options.callbacks.push_back(&callback);  ceres::GradientProblemSolver::Summary summary;  int num_iterations;  // First try: no updating.  ceres::Solve(options, problem, &x, &summary);  num_iterations = summary.iterations.size() - 1;  EXPECT_GT(num_iterations, 1);  for (int i = 0; i < callback.x_values.size(); ++i) {    EXPECT_EQ(50.0, callback.x_values[i]);  }  // Second try: with updating  x = 50.0;  options.update_state_every_iteration = true;  callback.x_values.clear();  ceres::Solve(options, problem, &x, &summary);  num_iterations = summary.iterations.size() - 1;  EXPECT_GT(num_iterations, 1);  EXPECT_EQ(original_x, callback.x_values[0]);  EXPECT_NE(original_x, callback.x_values[1]);}}  // namespace internal}  // namespace ceres
 |