| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Authors: keir@google.com (Keir Mierle),//          dgossow@google.com (David Gossow)#ifndef CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_#define CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_#include <mutex>#include <string>#include "ceres/cost_function.h"#include "ceres/internal/port.h"#include "ceres/iteration_callback.h"#include "ceres/local_parameterization.h"namespace ceres {namespace internal {class ProblemImpl;// Callback that collects information about gradient checking errors, and// will abort the solve as soon as an error occurs.class CERES_EXPORT_INTERNAL GradientCheckingIterationCallback    : public IterationCallback { public:  GradientCheckingIterationCallback();  // Will return SOLVER_CONTINUE until a gradient error has been detected,  // then return SOLVER_ABORT.  CallbackReturnType operator()(const IterationSummary& summary) final;  // Notify this that a gradient error has occurred (thread safe).  void SetGradientErrorDetected(std::string& error_log);  // Retrieve error status (not thread safe).  bool gradient_error_detected() const { return gradient_error_detected_; }  const std::string& error_log() const { return error_log_; } private:  bool gradient_error_detected_;  std::string error_log_;  std::mutex mutex_;};// Creates a CostFunction that checks the Jacobians that cost_function computes// with finite differences. This API is only intended for unit tests that intend// to  check the functionality of the GradientCheckingCostFunction// implementation directly.CERES_EXPORT_INTERNAL CostFunction* CreateGradientCheckingCostFunction(    const CostFunction* cost_function,    const std::vector<const LocalParameterization*>* local_parameterizations,    double relative_step_size,    double relative_precision,    const std::string& extra_info,    GradientCheckingIterationCallback* callback);// Create a new ProblemImpl object from the input problem_impl, where all// cost functions are wrapped so that each time their Evaluate method is called,// an additional check is performed that compares the Jacobians computed by// the original cost function with alternative Jacobians computed using// numerical differentiation. If local parameterizations are given for any// parameters, the Jacobians will be compared in the local space instead of the// ambient space. For details on the gradient checking procedure, see the// documentation of the GradientChecker class. If an error is detected in any// iteration, the respective cost function will notify the// GradientCheckingIterationCallback.//// The caller owns the returned ProblemImpl object.//// Note: This is quite inefficient and is intended only for debugging.//// relative_step_size and relative_precision are parameters to control// the numeric differentiation and the relative tolerance between the// jacobian computed by the CostFunctions in problem_impl and// jacobians obtained by numerically differentiating them. See the// documentation of 'numeric_derivative_relative_step_size' in solver.h for a// better explanation.CERES_EXPORT_INTERNAL ProblemImpl* CreateGradientCheckingProblemImpl(    ProblemImpl* problem_impl,    double relative_step_size,    double relative_precision,    GradientCheckingIterationCallback* callback);}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_
 |