| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2020 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: darius.rueckert@fau.de (Darius Rueckert)////#ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_#define CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_#include <Eigen/Core>#include <cmath>namespace ceres {// The brdf is based on:// Burley, Brent, and Walt Disney Animation Studios. "Physically-based shading// at disney." ACM SIGGRAPH. Vol. 2012. 2012.//// The implementation is based on:// https://github.com/wdas/brdf/blob/master/src/brdfs/disney.brdfstruct Brdf { public:  Brdf() {}  template <typename T>  inline bool operator()(const T* const material,                         const T* const c_ptr,                         const T* const n_ptr,                         const T* const v_ptr,                         const T* const l_ptr,                         const T* const x_ptr,                         const T* const y_ptr,                         T* residual) const {    using Vec3 = Eigen::Matrix<T, 3, 1>;    T metallic = material[0];    T subsurface = material[1];    T specular = material[2];    T roughness = material[3];    T specular_tint = material[4];    T anisotropic = material[5];    T sheen = material[6];    T sheen_tint = material[7];    T clearcoat = material[8];    T clearcoat_gloss = material[9];    Eigen::Map<const Vec3> c(c_ptr);    Eigen::Map<const Vec3> n(n_ptr);    Eigen::Map<const Vec3> v(v_ptr);    Eigen::Map<const Vec3> l(l_ptr);    Eigen::Map<const Vec3> x(x_ptr);    Eigen::Map<const Vec3> y(y_ptr);    const T n_dot_l = n.dot(l);    const T n_dot_v = n.dot(v);    const Vec3 l_p_v = l + v;    const Vec3 h = l_p_v / l_p_v.norm();    const T n_dot_h = n.dot(h);    const T l_dot_h = l.dot(h);    const T h_dot_x = h.dot(x);    const T h_dot_y = h.dot(y);    const T c_dlum = T(0.3) * c[0] + T(0.6) * c[1] + T(0.1) * c[2];    const Vec3 c_tint = c / c_dlum;    const Vec3 c_spec0 =        Lerp(specular * T(0.08) *                 Lerp(Vec3(T(1), T(1), T(1)), c_tint, specular_tint),             c,             metallic);    const Vec3 c_sheen = Lerp(Vec3(T(1), T(1), T(1)), c_tint, sheen_tint);    // Diffuse fresnel - go from 1 at normal incidence to .5 at grazing    // and mix in diffuse retro-reflection based on roughness    const T fl = SchlickFresnel(n_dot_l);    const T fv = SchlickFresnel(n_dot_v);    const T fd_90 = T(0.5) + T(2) * l_dot_h * l_dot_h * roughness;    const T fd = Lerp(T(1), fd_90, fl) * Lerp(T(1), fd_90, fv);    // Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf    // 1.25 scale is used to (roughly) preserve albedo    // Fss90 used to "flatten" retroreflection based on roughness    const T fss_90 = l_dot_h * l_dot_h * roughness;    const T fss = Lerp(T(1), fss_90, fl) * Lerp(T(1), fss_90, fv);    const T ss =        T(1.25) * (fss * (T(1) / (n_dot_l + n_dot_v) - T(0.5)) + T(0.5));    // specular    const T eps = T(0.001);    const T aspct = Aspect(anisotropic);    const T ax_temp = Square(roughness) / aspct;    const T ay_temp = Square(roughness) * aspct;    const T ax = (ax_temp < eps ? eps : ax_temp);    const T ay = (ay_temp < eps ? eps : ay_temp);    const T ds = GTR2Aniso(n_dot_h, h_dot_x, h_dot_y, ax, ay);    const T fh = SchlickFresnel(l_dot_h);    const Vec3 fs = Lerp(c_spec0, Vec3(T(1), T(1), T(1)), fh);    const T roughg = Square(roughness * T(0.5) + T(0.5));    const T ggxn_dot_l = SmithG_GGX(n_dot_l, roughg);    const T ggxn_dot_v = SmithG_GGX(n_dot_v, roughg);    const T gs = ggxn_dot_l * ggxn_dot_v;    // sheen    const Vec3 f_sheen = fh * sheen * c_sheen;    // clearcoat (ior = 1.5 -> F0 = 0.04)    const T a = Lerp(T(0.1), T(0.001), clearcoat_gloss);    const T dr = GTR1(n_dot_h, a);    const T fr = Lerp(T(0.04), T(1), fh);    const T cggxn_dot_l = SmithG_GGX(n_dot_l, T(0.25));    const T cggxn_dot_v = SmithG_GGX(n_dot_v, T(0.25));    const T gr = cggxn_dot_l * cggxn_dot_v;    const Vec3 result_no_cosine =        (T(1.0 / M_PI) * Lerp(fd, ss, subsurface) * c + f_sheen) *            (T(1) - metallic) +        gs * fs * ds +        Vec3(T(0.25), T(0.25), T(0.25)) * clearcoat * gr * fr * dr;    const Vec3 result = n_dot_l * result_no_cosine;    residual[0] = result(0);    residual[1] = result(1);    residual[2] = result(2);    return true;  }  template <typename T>  inline T SchlickFresnel(const T& u) const {    T m = T(1) - u;    const T m2 = m * m;    return m2 * m2 * m;  // (1-u)^5  }  template <typename T>  inline T Aspect(const T& anisotropic) const {    return T(sqrt(T(1) - anisotropic * T(0.9)));  }  template <typename T>  inline T SmithG_GGX(const T& n_dot_v, const T& alpha_g) const {    const T a = alpha_g * alpha_g;    const T b = n_dot_v * n_dot_v;    return T(1) / (n_dot_v + T(sqrt(a + b - a * b)));  }  // Generalized-Trowbridge-Reitz (GTR) Microfacet Distribution  // See paper, Appendix B  template <typename T>  inline T GTR1(const T& n_dot_h, const T& a) const {    T result = T(0);    if (a >= T(1)) {      result = T(1 / M_PI);    } else {      const T a2 = a * a;      const T t = T(1) + (a2 - T(1)) * n_dot_h * n_dot_h;      result = (a2 - T(1)) / (T(M_PI) * T(log(a2) * t));    }    return result;  }  template <typename T>  inline T GTR2Aniso(const T& n_dot_h,                     const T& h_dot_x,                     const T& h_dot_y,                     const T& ax,                     const T& ay) const {    return T(1) / (T(M_PI) * ax * ay *                   Square(Square(h_dot_x / ax) + Square(h_dot_y / ay) +                          n_dot_h * n_dot_h));  }  template <typename T>  inline T Lerp(const T& a, const T& b, const T& u) const {    return a + u * (b - a);  }  template <typename Derived1, typename Derived2>  inline typename Derived1::PlainObject Lerp(      const Eigen::MatrixBase<Derived1>& a,      const Eigen::MatrixBase<Derived2>& b,      typename Derived1::Scalar alpha) const {    return (typename Derived1::Scalar(1) - alpha) * a + alpha * b;  }  template <typename T>  inline T Square(const T& x) const {    return x * x;  }};}  // namespace ceres#endif  // CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_
 |