| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//         sameeragarwal@google.com (Sameer Agarwal)//// Create CostFunctions as needed by the least squares framework with jacobians// computed via numeric (a.k.a. finite) differentiation. For more details see// http://en.wikipedia.org/wiki/Numerical_differentiation.//// To get an numerically differentiated cost function, you must define// a class with a operator() (a functor) that computes the residuals.//// The function must write the computed value in the last argument// (the only non-const one) and return true to indicate success.// Please see cost_function.h for details on how the return value// maybe used to impose simple constraints on the parameter block.//// For example, consider a scalar error e = k - x'y, where both x and y are// two-dimensional column vector parameters, the prime sign indicates// transposition, and k is a constant. The form of this error, which is the// difference between a constant and an expression, is a common pattern in least// squares problems. For example, the value x'y might be the model expectation// for a series of measurements, where there is an instance of the cost function// for each measurement k.//// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,// the squaring is implicitly done by the optimization framework.//// To write an numerically-differentiable cost function for the above model, first// define the object////   class MyScalarCostFunctor {//     explicit MyScalarCostFunctor(double k): k_(k) {}////     bool operator()(const double* const x,//                     const double* const y,//                     double* residuals) const {//       residuals[0] = k_ - x[0] * y[0] - x[1] * y[1];//       return true;//     }////    private://     double k_;//   };//// Note that in the declaration of operator() the input parameters x// and y come first, and are passed as const pointers to arrays of// doubles. If there were three input parameters, then the third input// parameter would come after y. The output is always the last// parameter, and is also a pointer to an array. In the example above,// the residual is a scalar, so only residuals[0] is set.//// Then given this class definition, the numerically differentiated// cost function with central differences used for computing the// derivative can be constructed as follows.////   CostFunction* cost_function//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(//           new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^//                                                             |     |  |  |//                                 Finite Differencing Scheme -+     |  |  |//                                 Dimension of residual ------------+  |  |//                                 Dimension of x ----------------------+  |//                                 Dimension of y -------------------------+//// In this example, there is usually an instance for each measurement of k.//// In the instantiation above, the template parameters following// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing// a 1-dimensional output from two arguments, both 2-dimensional.//// NumericDiffCostFunction also supports cost functions with a// runtime-determined number of residuals. For example:////   CostFunction* cost_function//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(//           new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^//           TAKE_OWNERSHIP,                                            |     |  |//           runtime_number_of_residuals); <----+                       |     |  |//                                              |                       |     |  |//                                              |                       |     |  |//             Actual number of residuals ------+                       |     |  |//             Indicate dynamic number of residuals --------------------+     |  |//             Dimension of x ------------------------------------------------+  |//             Dimension of y ---------------------------------------------------+//// The framework can currently accommodate cost functions of up to 10// independent variables, and there is no limit on the dimensionality// of each of them.//// The central difference method is considerably more accurate at the cost of// twice as many function evaluations than forward difference. Consider using// central differences begin with, and only after that works, trying forward// difference to improve performance.//// WARNING #1: A common beginner's error when first using// NumericDiffCostFunction is to get the sizing wrong. In particular,// there is a tendency to set the template parameters to (dimension of// residual, number of parameters) instead of passing a dimension// parameter for *every parameter*. In the example above, that would// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'// argument. Please be careful when setting the size parameters.////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ALTERNATE INTERFACE//// For a variety of reasons, including compatibility with legacy code,// NumericDiffCostFunction can also take CostFunction objects as// input. The following describes how.//// To get a numerically differentiated cost function, define a// subclass of CostFunction such that the Evaluate() function ignores// the jacobian parameter. The numeric differentiation wrapper will// fill in the jacobian parameter if necessary by repeatedly calling// the Evaluate() function with small changes to the appropriate// parameters, and computing the slope. For performance, the numeric// differentiation wrapper class is templated on the concrete cost// function, even though it could be implemented only in terms of the// virtual CostFunction interface.//// The numerically differentiated version of a cost function for a cost function// can be constructed as follows:////   CostFunction* cost_function//       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(//           new MyCostFunction(...), TAKE_OWNERSHIP);//// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8// respectively. Look at the tests for a more detailed example.//// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_#include <memory>#include "Eigen/Dense"#include "ceres/cost_function.h"#include "ceres/internal/numeric_diff.h"#include "ceres/numeric_diff_options.h"#include "ceres/sized_cost_function.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {template <typename CostFunctor,          NumericDiffMethodType method = CENTRAL,          int kNumResiduals = 0,  // Number of residuals, or ceres::DYNAMIC          int N0 = 0,   // Number of parameters in block 0.          int N1 = 0,   // Number of parameters in block 1.          int N2 = 0,   // Number of parameters in block 2.          int N3 = 0,   // Number of parameters in block 3.          int N4 = 0,   // Number of parameters in block 4.          int N5 = 0,   // Number of parameters in block 5.          int N6 = 0,   // Number of parameters in block 6.          int N7 = 0,   // Number of parameters in block 7.          int N8 = 0,   // Number of parameters in block 8.          int N9 = 0>   // Number of parameters in block 9.class NumericDiffCostFunction    : public SizedCostFunction<kNumResiduals,                               N0, N1, N2, N3, N4,                               N5, N6, N7, N8, N9> { public:  NumericDiffCostFunction(      CostFunctor* functor,      Ownership ownership = TAKE_OWNERSHIP,      int num_residuals = kNumResiduals,      const NumericDiffOptions& options = NumericDiffOptions())      : functor_(functor),        ownership_(ownership),        options_(options) {    if (kNumResiduals == DYNAMIC) {      SizedCostFunction<kNumResiduals,                        N0, N1, N2, N3, N4,                        N5, N6, N7, N8, N9>          ::set_num_residuals(num_residuals);    }  }  ~NumericDiffCostFunction() {    if (ownership_ != TAKE_OWNERSHIP) {      functor_.release();    }  }  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    using internal::FixedArray;    using internal::NumericDiff;    const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;    const int kNumParameterBlocks =        (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) +        (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0);    // Get the function value (residuals) at the point to evaluate.    if (!internal::EvaluateImpl<CostFunctor,                                N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(                                    functor_.get(),                                    parameters,                                    residuals,                                    functor_.get())) {      return false;    }    if (jacobians == NULL) {      return true;    }    // Create a copy of the parameters which will get mutated.    FixedArray<double> parameters_copy(kNumParameters);    FixedArray<double*> parameters_reference_copy(kNumParameterBlocks);    parameters_reference_copy[0] = parameters_copy.get();    if (N1) parameters_reference_copy[1] = parameters_reference_copy[0] + N0;    if (N2) parameters_reference_copy[2] = parameters_reference_copy[1] + N1;    if (N3) parameters_reference_copy[3] = parameters_reference_copy[2] + N2;    if (N4) parameters_reference_copy[4] = parameters_reference_copy[3] + N3;    if (N5) parameters_reference_copy[5] = parameters_reference_copy[4] + N4;    if (N6) parameters_reference_copy[6] = parameters_reference_copy[5] + N5;    if (N7) parameters_reference_copy[7] = parameters_reference_copy[6] + N6;    if (N8) parameters_reference_copy[8] = parameters_reference_copy[7] + N7;    if (N9) parameters_reference_copy[9] = parameters_reference_copy[8] + N8;#define CERES_COPY_PARAMETER_BLOCK(block)                               \  if (N ## block) memcpy(parameters_reference_copy[block],              \                         parameters[block],                             \                         sizeof(double) * N ## block);  // NOLINT    CERES_COPY_PARAMETER_BLOCK(0);    CERES_COPY_PARAMETER_BLOCK(1);    CERES_COPY_PARAMETER_BLOCK(2);    CERES_COPY_PARAMETER_BLOCK(3);    CERES_COPY_PARAMETER_BLOCK(4);    CERES_COPY_PARAMETER_BLOCK(5);    CERES_COPY_PARAMETER_BLOCK(6);    CERES_COPY_PARAMETER_BLOCK(7);    CERES_COPY_PARAMETER_BLOCK(8);    CERES_COPY_PARAMETER_BLOCK(9);#undef CERES_COPY_PARAMETER_BLOCK#define CERES_EVALUATE_JACOBIAN_FOR_BLOCK(block)                        \    if (N ## block && jacobians[block] != NULL) {                       \      if (!NumericDiff<CostFunctor,                                     \                       method,                                          \                       kNumResiduals,                                   \                       N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,          \                       block,                                           \                       N ## block >::EvaluateJacobianForParameterBlock( \                           functor_.get(),                              \                           residuals,                                   \                           options_,                                    \                          SizedCostFunction<kNumResiduals,              \                           N0, N1, N2, N3, N4,                          \                           N5, N6, N7, N8, N9>::num_residuals(),        \                           block,                                       \                           N ## block,                                  \                           parameters_reference_copy.get(),             \                           jacobians[block])) {                         \        return false;                                                   \      }                                                                 \    }    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(0);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(1);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(2);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(3);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(4);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(5);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(6);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(7);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(8);    CERES_EVALUATE_JACOBIAN_FOR_BLOCK(9);#undef CERES_EVALUATE_JACOBIAN_FOR_BLOCK    return true;  } private:  std::unique_ptr<CostFunctor> functor_;  Ownership ownership_;  NumericDiffOptions options_;};}  // namespace ceres#endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 |