| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_#define CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_#include "ceres/cost_function.h"#include "ceres/sized_cost_function.h"#include "ceres/types.h"namespace ceres {namespace internal {// Noise factor for randomized cost function.static constexpr double kNoiseFactor = 0.01;// Default random seed for randomized cost function.static constexpr unsigned int kRandomSeed = 1234;// y1 = x1'x2      -> dy1/dx1 = x2,               dy1/dx2 = x1// y2 = (x1'x2)^2  -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2)// y3 = x2'x2      -> dy3/dx1 = 0,                dy3/dx2 = 2 * x2class EasyFunctor { public:  bool operator()(const double* x1, const double* x2, double* residuals) const;  void ExpectCostFunctionEvaluationIsNearlyCorrect(      const CostFunction& cost_function,      NumericDiffMethodType method) const;};class EasyCostFunction : public SizedCostFunction<3, 5, 5> { public:  bool Evaluate(double const* const* parameters,                double* residuals,                double** /* not used */) const final {    return functor_(parameters[0], parameters[1], residuals);  } private:  EasyFunctor functor_;};// y1 = sin(x1'x2)// y2 = exp(-x1'x2 / 10)//// dy1/dx1 =  x2 * cos(x1'x2),            dy1/dx2 =  x1 * cos(x1'x2)// dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10class TranscendentalFunctor { public:  bool operator()(const double* x1, const double* x2, double* residuals) const;  void ExpectCostFunctionEvaluationIsNearlyCorrect(      const CostFunction& cost_function,      NumericDiffMethodType method) const;};class TranscendentalCostFunction : public SizedCostFunction<2, 5, 5> { public:  bool Evaluate(double const* const* parameters,                double* residuals,                double** /* not used */) const final {    return functor_(parameters[0], parameters[1], residuals);  } private:  TranscendentalFunctor functor_;};// y = exp(x), dy/dx = exp(x)class ExponentialFunctor { public:  bool operator()(const double* x1, double* residuals) const;  void ExpectCostFunctionEvaluationIsNearlyCorrect(      const CostFunction& cost_function) const;};class ExponentialCostFunction : public SizedCostFunction<1, 1> { public:  bool Evaluate(double const* const* parameters,                double* residuals,                double** /* not used */) const final {    return functor_(parameters[0], residuals);  } private:  ExponentialFunctor functor_;};// Test adaptive numeric differentiation by synthetically adding random noise// to a functor.// y = x^2 + [random noise], dy/dx ~ 2xclass RandomizedFunctor { public:  RandomizedFunctor(double noise_factor, unsigned int random_seed)      : noise_factor_(noise_factor), random_seed_(random_seed) {  }  bool operator()(const double* x1, double* residuals) const;  void ExpectCostFunctionEvaluationIsNearlyCorrect(      const CostFunction& cost_function) const; private:  double noise_factor_;  unsigned int random_seed_;};class RandomizedCostFunction : public SizedCostFunction<1, 1> { public:  RandomizedCostFunction(double noise_factor, unsigned int random_seed)      : functor_(noise_factor, random_seed) {  }  bool Evaluate(double const* const* parameters,                double* residuals,                double** /* not used */) const final {    return functor_(parameters[0], residuals);  } private:  RandomizedFunctor functor_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_
 |