| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: strandmark@google.com (Petter Strandmark)
 
- #include "ceres/gradient_problem.h"
 
- #include "ceres/gradient_problem_solver.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- // Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function .
 
- class Rosenbrock : public ceres::FirstOrderFunction {
 
-  public:
 
-   virtual ~Rosenbrock() {}
 
-   bool Evaluate(const double* parameters,
 
-                 double* cost,
 
-                 double* gradient) const final {
 
-     const double x = parameters[0];
 
-     const double y = parameters[1];
 
-     cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
 
-     if (gradient != NULL) {
 
-       gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
 
-       gradient[1] = 200.0 * (y - x * x);
 
-     }
 
-     return true;
 
-   }
 
-   int NumParameters() const final { return 2; }
 
- };
 
- TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) {
 
-   const double expected_tolerance = 1e-9;
 
-   double parameters[2] = {-1.2, 0.0};
 
-   ceres::GradientProblemSolver::Options options;
 
-   ceres::GradientProblemSolver::Summary summary;
 
-   ceres::GradientProblem problem(new Rosenbrock());
 
-   ceres::Solve(options, problem, parameters, &summary);
 
-   EXPECT_EQ(CONVERGENCE, summary.termination_type);
 
-   EXPECT_NEAR(1.0, parameters[0], expected_tolerance);
 
-   EXPECT_NEAR(1.0, parameters[1], expected_tolerance);
 
- }
 
- class QuadraticFunction : public ceres::FirstOrderFunction {
 
-   virtual ~QuadraticFunction() {}
 
-   bool Evaluate(const double* parameters,
 
-                 double* cost,
 
-                 double* gradient) const final {
 
-     const double x = parameters[0];
 
-     *cost = 0.5 * (5.0 - x) * (5.0 - x);
 
-     if (gradient != NULL) {
 
-       gradient[0] = x - 5.0;
 
-     }
 
-     return true;
 
-   }
 
-   int NumParameters() const final { return 1; }
 
- };
 
- struct RememberingCallback : public IterationCallback {
 
-   explicit RememberingCallback(double *x) : calls(0), x(x) {}
 
-   virtual ~RememberingCallback() {}
 
-   CallbackReturnType operator()(const IterationSummary& summary) final {
 
-     x_values.push_back(*x);
 
-     return SOLVER_CONTINUE;
 
-   }
 
-   int calls;
 
-   double *x;
 
-   std::vector<double> x_values;
 
- };
 
- TEST(Solver, UpdateStateEveryIterationOption) {
 
-   double x = 50.0;
 
-   const double original_x = x;
 
-   ceres::GradientProblem problem(new QuadraticFunction);
 
-   ceres::GradientProblemSolver::Options options;
 
-   RememberingCallback callback(&x);
 
-   options.callbacks.push_back(&callback);
 
-   ceres::GradientProblemSolver::Summary summary;
 
-   int num_iterations;
 
-   // First try: no updating.
 
-   ceres::Solve(options, problem, &x, &summary);
 
-   num_iterations = summary.iterations.size() - 1;
 
-   EXPECT_GT(num_iterations, 1);
 
-   for (int i = 0; i < callback.x_values.size(); ++i) {
 
-     EXPECT_EQ(50.0, callback.x_values[i]);
 
-   }
 
-   // Second try: with updating
 
-   x = 50.0;
 
-   options.update_state_every_iteration = true;
 
-   callback.x_values.clear();
 
-   ceres::Solve(options, problem, &x, &summary);
 
-   num_iterations = summary.iterations.size() - 1;
 
-   EXPECT_GT(num_iterations, 1);
 
-   EXPECT_EQ(original_x, callback.x_values[0]);
 
-   EXPECT_NE(original_x, callback.x_values[1]);
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |