|  | @@ -0,0 +1,512 @@
 | 
	
		
			
				|  |  | +// Ceres Solver - A fast non-linear least squares minimizer
 | 
	
		
			
				|  |  | +// Copyright 2012 Google Inc. All rights reserved.
 | 
	
		
			
				|  |  | +// http://code.google.com/p/ceres-solver/
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Redistribution and use in source and binary forms, with or without
 | 
	
		
			
				|  |  | +// modification, are permitted provided that the following conditions are met:
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// * Redistributions of source code must retain the above copyright notice,
 | 
	
		
			
				|  |  | +//   this list of conditions and the following disclaimer.
 | 
	
		
			
				|  |  | +// * Redistributions in binary form must reproduce the above copyright notice,
 | 
	
		
			
				|  |  | +//   this list of conditions and the following disclaimer in the documentation
 | 
	
		
			
				|  |  | +//   and/or other materials provided with the distribution.
 | 
	
		
			
				|  |  | +// * Neither the name of Google Inc. nor the names of its contributors may be
 | 
	
		
			
				|  |  | +//   used to endorse or promote products derived from this software without
 | 
	
		
			
				|  |  | +//   specific prior written permission.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
	
		
			
				|  |  | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
	
		
			
				|  |  | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
	
		
			
				|  |  | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
	
		
			
				|  |  | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
	
		
			
				|  |  | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
	
		
			
				|  |  | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
	
		
			
				|  |  | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
	
		
			
				|  |  | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
	
		
			
				|  |  | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
	
		
			
				|  |  | +// POSSIBILITY OF SUCH DAMAGE.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Author: moll.markus@arcor.de (Markus Moll)
 | 
	
		
			
				|  |  | +//         sameeragarwal@google.com (Sameer Agarwal)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include "ceres/polynomial.h"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include <limits>
 | 
	
		
			
				|  |  | +#include <cmath>
 | 
	
		
			
				|  |  | +#include <cstddef>
 | 
	
		
			
				|  |  | +#include <algorithm>
 | 
	
		
			
				|  |  | +#include "gtest/gtest.h"
 | 
	
		
			
				|  |  | +#include "ceres/test_util.h"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +namespace ceres {
 | 
	
		
			
				|  |  | +namespace internal {
 | 
	
		
			
				|  |  | +namespace {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// For IEEE-754 doubles, machine precision is about 2e-16.
 | 
	
		
			
				|  |  | +const double kEpsilon = 1e-13;
 | 
	
		
			
				|  |  | +const double kEpsilonLoose = 1e-9;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Return the constant polynomial p(x) = 1.23.
 | 
	
		
			
				|  |  | +Vector ConstantPolynomial(double value) {
 | 
	
		
			
				|  |  | +  Vector poly(1);
 | 
	
		
			
				|  |  | +  poly(0) = value;
 | 
	
		
			
				|  |  | +  return poly;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Return the polynomial p(x) = poly(x) * (x - root).
 | 
	
		
			
				|  |  | +Vector AddRealRoot(const Vector& poly, double root) {
 | 
	
		
			
				|  |  | +  Vector poly2(poly.size() + 1);
 | 
	
		
			
				|  |  | +  poly2.setZero();
 | 
	
		
			
				|  |  | +  poly2.head(poly.size()) += poly;
 | 
	
		
			
				|  |  | +  poly2.tail(poly.size()) -= root * poly;
 | 
	
		
			
				|  |  | +  return poly2;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Return the polynomial
 | 
	
		
			
				|  |  | +// p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
 | 
	
		
			
				|  |  | +Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
 | 
	
		
			
				|  |  | +  Vector poly2(poly.size() + 2);
 | 
	
		
			
				|  |  | +  poly2.setZero();
 | 
	
		
			
				|  |  | +  // Multiply poly by x^2 - 2real + abs(real,imag)^2
 | 
	
		
			
				|  |  | +  poly2.head(poly.size()) += poly;
 | 
	
		
			
				|  |  | +  poly2.segment(1, poly.size()) -= 2 * real * poly;
 | 
	
		
			
				|  |  | +  poly2.tail(poly.size()) += (real*real + imag*imag) * poly;
 | 
	
		
			
				|  |  | +  return poly2;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Sort the entries in a vector.
 | 
	
		
			
				|  |  | +// Needed because the roots are not returned in sorted order.
 | 
	
		
			
				|  |  | +Vector SortVector(const Vector& in) {
 | 
	
		
			
				|  |  | +  Vector out(in);
 | 
	
		
			
				|  |  | +  std::sort(out.data(), out.data() + out.size());
 | 
	
		
			
				|  |  | +  return out;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Run a test with the polynomial defined by the N real roots in roots_real.
 | 
	
		
			
				|  |  | +// If use_real is false, NULL is passed as the real argument to
 | 
	
		
			
				|  |  | +// FindPolynomialRoots. If use_imaginary is false, NULL is passed as the
 | 
	
		
			
				|  |  | +// imaginary argument to FindPolynomialRoots.
 | 
	
		
			
				|  |  | +template<int N>
 | 
	
		
			
				|  |  | +void RunPolynomialTestRealRoots(const double (&real_roots)[N],
 | 
	
		
			
				|  |  | +                                bool use_real,
 | 
	
		
			
				|  |  | +                                bool use_imaginary,
 | 
	
		
			
				|  |  | +                                double epsilon) {
 | 
	
		
			
				|  |  | +  Vector real;
 | 
	
		
			
				|  |  | +  Vector imaginary;
 | 
	
		
			
				|  |  | +  Vector poly = ConstantPolynomial(1.23);
 | 
	
		
			
				|  |  | +  for (int i = 0; i < N; ++i) {
 | 
	
		
			
				|  |  | +    poly = AddRealRoot(poly, real_roots[i]);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  Vector* const real_ptr = use_real ? &real : NULL;
 | 
	
		
			
				|  |  | +  Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;
 | 
	
		
			
				|  |  | +  bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_EQ(success, true);
 | 
	
		
			
				|  |  | +  if (use_real) {
 | 
	
		
			
				|  |  | +    EXPECT_EQ(real.size(), N);
 | 
	
		
			
				|  |  | +    real = SortVector(real);
 | 
	
		
			
				|  |  | +    ExpectArraysClose(N, real.data(), real_roots, epsilon);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  if (use_imaginary) {
 | 
	
		
			
				|  |  | +    EXPECT_EQ(imaginary.size(), N);
 | 
	
		
			
				|  |  | +    const Vector zeros = Vector::Zero(N);
 | 
	
		
			
				|  |  | +    ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +}  // namespace
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {
 | 
	
		
			
				|  |  | +  // Vector poly(0) is an ambiguous constructor call, so
 | 
	
		
			
				|  |  | +  // use the constructor with explicit column count.
 | 
	
		
			
				|  |  | +  Vector poly(0, 1);
 | 
	
		
			
				|  |  | +  Vector real;
 | 
	
		
			
				|  |  | +  Vector imag;
 | 
	
		
			
				|  |  | +  bool success = FindPolynomialRoots(poly, &real, &imag);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_EQ(success, false);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {
 | 
	
		
			
				|  |  | +  Vector poly = ConstantPolynomial(1.23);
 | 
	
		
			
				|  |  | +  Vector real;
 | 
	
		
			
				|  |  | +  Vector imag;
 | 
	
		
			
				|  |  | +  bool success = FindPolynomialRoots(poly, &real, &imag);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_EQ(success, true);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(real.size(), 0);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(imag.size(), 0);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {
 | 
	
		
			
				|  |  | +  const double roots[1] = { 42.42 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {
 | 
	
		
			
				|  |  | +  const double roots[1] = { -42.42 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) {
 | 
	
		
			
				|  |  | +  const double roots[2] = { 1.0, 42.42 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) {
 | 
	
		
			
				|  |  | +  const double roots[2] = { -42.42, 1.0 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) {
 | 
	
		
			
				|  |  | +  const double roots[2] = { -42.42, -1.0 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) {
 | 
	
		
			
				|  |  | +  const double roots[2] = { 42.42, 42.43 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) {
 | 
	
		
			
				|  |  | +  Vector real;
 | 
	
		
			
				|  |  | +  Vector imag;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  Vector poly = ConstantPolynomial(1.23);
 | 
	
		
			
				|  |  | +  poly = AddComplexRootPair(poly, 42.42, 4.2);
 | 
	
		
			
				|  |  | +  bool success = FindPolynomialRoots(poly, &real, &imag);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_EQ(success, true);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(real.size(), 2);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(imag.size(), 2);
 | 
	
		
			
				|  |  | +  ExpectClose(real(0), 42.42, kEpsilon);
 | 
	
		
			
				|  |  | +  ExpectClose(real(1), 42.42, kEpsilon);
 | 
	
		
			
				|  |  | +  ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
 | 
	
		
			
				|  |  | +  ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
 | 
	
		
			
				|  |  | +  ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuarticPolynomialWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { -42.42, 0.0, 0.0, 42.42 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuarticMonomialWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { 0.0, 0.0, 0.0, 0.0 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, NullPointerAsImaginaryPartWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, NullPointerAsRealPartWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, BothOutputArgumentsNullWorks) {
 | 
	
		
			
				|  |  | +  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
 | 
	
		
			
				|  |  | +  RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, DifferentiateConstantPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = 1;
 | 
	
		
			
				|  |  | +  Vector polynomial(1);
 | 
	
		
			
				|  |  | +  polynomial(0) = 1.0;
 | 
	
		
			
				|  |  | +  const Vector derivative = DifferentiatePolynomial(polynomial);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(derivative.rows(), 0);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, DifferentiateQuadraticPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = x^2 + 2x + 3;
 | 
	
		
			
				|  |  | +  Vector polynomial(3);
 | 
	
		
			
				|  |  | +  polynomial(0) = 1.0;
 | 
	
		
			
				|  |  | +  polynomial(1) = 2.0;
 | 
	
		
			
				|  |  | +  polynomial(2) = 3.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector derivative = DifferentiatePolynomial(polynomial);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(derivative.rows(), 2);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(derivative(0), 2.0);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(derivative(1), 2.0);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, MinimizeConstantPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = 1;
 | 
	
		
			
				|  |  | +  Vector polynomial(1);
 | 
	
		
			
				|  |  | +  polynomial(0) = 1.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double optimal_x = 0.0;
 | 
	
		
			
				|  |  | +  double optimal_value = 0.0;
 | 
	
		
			
				|  |  | +  double min_x = 0.0;
 | 
	
		
			
				|  |  | +  double max_x = 1.0;
 | 
	
		
			
				|  |  | +  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_value, 1.0);
 | 
	
		
			
				|  |  | +  EXPECT_LE(optimal_x, max_x);
 | 
	
		
			
				|  |  | +  EXPECT_GE(optimal_x, min_x);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, MinimizeLinearPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = x - 2
 | 
	
		
			
				|  |  | +  Vector polynomial(2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  polynomial(0) = 1.0;
 | 
	
		
			
				|  |  | +  polynomial(1) = 2.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double optimal_x = 0.0;
 | 
	
		
			
				|  |  | +  double optimal_value = 0.0;
 | 
	
		
			
				|  |  | +  double min_x = 0.0;
 | 
	
		
			
				|  |  | +  double max_x = 1.0;
 | 
	
		
			
				|  |  | +  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_x, 0.0);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_value, 2.0);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, MinimizeQuadraticPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = x^2 - 3 x + 2
 | 
	
		
			
				|  |  | +  // min_x = 3/2
 | 
	
		
			
				|  |  | +  // min_value = -1/4;
 | 
	
		
			
				|  |  | +  Vector polynomial(3);
 | 
	
		
			
				|  |  | +  polynomial(0) = 1.0;
 | 
	
		
			
				|  |  | +  polynomial(1) = -3.0;
 | 
	
		
			
				|  |  | +  polynomial(2) = 2.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double optimal_x = 0.0;
 | 
	
		
			
				|  |  | +  double optimal_value = 0.0;
 | 
	
		
			
				|  |  | +  double min_x = -2.0;
 | 
	
		
			
				|  |  | +  double max_x = 2.0;
 | 
	
		
			
				|  |  | +  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_x, 3.0/2.0);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_value, -1.0/4.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  min_x = -2.0;
 | 
	
		
			
				|  |  | +  max_x = 1.0;
 | 
	
		
			
				|  |  | +  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_x, 1.0);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_value, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  min_x = 2.0;
 | 
	
		
			
				|  |  | +  max_x = 3.0;
 | 
	
		
			
				|  |  | +  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_x, 2.0);
 | 
	
		
			
				|  |  | +  EXPECT_EQ(optimal_value, 0.0);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polymomial, ConstantInterpolatingPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = 1.0
 | 
	
		
			
				|  |  | +  Vector true_polynomial(1);
 | 
	
		
			
				|  |  | +  true_polynomial << 1.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  FunctionSample sample;
 | 
	
		
			
				|  |  | +  sample.x = 1.0;
 | 
	
		
			
				|  |  | +  sample.value = 1.0;
 | 
	
		
			
				|  |  | +  sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +  samples.push_back(sample);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, LinearInterpolatingPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = 2x - 1
 | 
	
		
			
				|  |  | +  Vector true_polynomial(2);
 | 
	
		
			
				|  |  | +  true_polynomial << 2.0, -1.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  FunctionSample sample;
 | 
	
		
			
				|  |  | +  sample.x = 1.0;
 | 
	
		
			
				|  |  | +  sample.value = 1.0;
 | 
	
		
			
				|  |  | +  sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +  sample.gradient = 2.0;
 | 
	
		
			
				|  |  | +  sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +  samples.push_back(sample);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, QuadraticInterpolatingPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = 2x^2 + 3x + 2
 | 
	
		
			
				|  |  | +   Vector true_polynomial(3);
 | 
	
		
			
				|  |  | +   true_polynomial << 2.0, 3.0, 2.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 1.0;
 | 
	
		
			
				|  |  | +    sample.value = 7.0;
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    sample.gradient = 7.0;
 | 
	
		
			
				|  |  | +    sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = -3.0;
 | 
	
		
			
				|  |  | +    sample.value = 11.0;
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, DeficientCubicInterpolatingPolynomial) {
 | 
	
		
			
				|  |  | +  // p(x) = 2x^2 + 3x + 2
 | 
	
		
			
				|  |  | +  Vector true_polynomial(4);
 | 
	
		
			
				|  |  | +  true_polynomial << 0.0, 2.0, 3.0, 2.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 1.0;
 | 
	
		
			
				|  |  | +    sample.value = 7.0;
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    sample.gradient = 7.0;
 | 
	
		
			
				|  |  | +    sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = -3.0;
 | 
	
		
			
				|  |  | +    sample.value = 11.0;
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    sample.gradient = -9;
 | 
	
		
			
				|  |  | +    sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, CubicInterpolatingPolynomialFromValues) {
 | 
	
		
			
				|  |  | +  // p(x) = x^3 + 2x^2 + 3x + 2
 | 
	
		
			
				|  |  | + Vector true_polynomial(4);
 | 
	
		
			
				|  |  | + true_polynomial << 1.0, 2.0, 3.0, 2.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 1.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = -3.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 2.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 0.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) {
 | 
	
		
			
				|  |  | +  // p(x) = x^3 + 2x^2 + 3x + 2
 | 
	
		
			
				|  |  | + Vector true_polynomial(4);
 | 
	
		
			
				|  |  | + true_polynomial << 1.0, 2.0, 3.0, 2.0;
 | 
	
		
			
				|  |  | + Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 1.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = -3.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 2.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) {
 | 
	
		
			
				|  |  | +  // p(x) = x^3 + 2x^2 + 3x + 2
 | 
	
		
			
				|  |  | + Vector true_polynomial(4);
 | 
	
		
			
				|  |  | + true_polynomial << 1.0, 2.0, 3.0, 2.0;
 | 
	
		
			
				|  |  | + Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + vector<FunctionSample> samples;
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = -3.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  {
 | 
	
		
			
				|  |  | +    FunctionSample sample;
 | 
	
		
			
				|  |  | +    sample.x = 2.0;
 | 
	
		
			
				|  |  | +    sample.value = EvaluatePolynomial(true_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.value_is_valid = true;
 | 
	
		
			
				|  |  | +    sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
 | 
	
		
			
				|  |  | +    sample.gradient_is_valid = true;
 | 
	
		
			
				|  |  | +    samples.push_back(sample);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const Vector polynomial = FindInterpolatingPolynomial(samples);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +}  // namespace internal
 | 
	
		
			
				|  |  | +}  // namespace ceres
 |