|  | @@ -0,0 +1,119 @@
 | 
	
		
			
				|  |  | +// Ceres Solver - A fast non-linear least squares minimizer
 | 
	
		
			
				|  |  | +// Copyright 2020 Google Inc. All rights reserved.
 | 
	
		
			
				|  |  | +// http://ceres-solver.org/
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Redistribution and use in source and binary forms, with or without
 | 
	
		
			
				|  |  | +// modification, are permitted provided that the following conditions are met:
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// * Redistributions of source code must retain the above copyright notice,
 | 
	
		
			
				|  |  | +//   this list of conditions and the following disclaimer.
 | 
	
		
			
				|  |  | +// * Redistributions in binary form must reproduce the above copyright notice,
 | 
	
		
			
				|  |  | +//   this list of conditions and the following disclaimer in the documentation
 | 
	
		
			
				|  |  | +//   and/or other materials provided with the distribution.
 | 
	
		
			
				|  |  | +// * Neither the name of Google Inc. nor the names of its contributors may be
 | 
	
		
			
				|  |  | +//   used to endorse or promote products derived from this software without
 | 
	
		
			
				|  |  | +//   specific prior written permission.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
	
		
			
				|  |  | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
	
		
			
				|  |  | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
	
		
			
				|  |  | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
	
		
			
				|  |  | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
	
		
			
				|  |  | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
	
		
			
				|  |  | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
	
		
			
				|  |  | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
	
		
			
				|  |  | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
	
		
			
				|  |  | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
	
		
			
				|  |  | +// POSSIBILITY OF SUCH DAMAGE.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Author: darius.rueckert@fau.de (Darius Rueckert)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include <memory>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include "benchmark/benchmark.h"
 | 
	
		
			
				|  |  | +#include "ceres/ceres.h"
 | 
	
		
			
				|  |  | +#include "codegen/test_utils.h"
 | 
	
		
			
				|  |  | +#include "linear_cost_functions.h"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +namespace ceres {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#ifdef WITH_CODE_GENERATION
 | 
	
		
			
				|  |  | +static void BM_Linear1CodeGen(benchmark::State& state) {
 | 
	
		
			
				|  |  | +  double parameter_block1[] = {1.};
 | 
	
		
			
				|  |  | +  double* parameters[] = {parameter_block1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double jacobian1[1];
 | 
	
		
			
				|  |  | +  double residuals[1];
 | 
	
		
			
				|  |  | +  double* jacobians[] = {jacobian1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::unique_ptr<ceres::CostFunction> cost_function(new Linear1CostFunction());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  while (state.KeepRunning()) {
 | 
	
		
			
				|  |  | +    cost_function->Evaluate(parameters, residuals, jacobians);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +BENCHMARK(BM_Linear1CodeGen);
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void BM_Linear1AutoDiff(benchmark::State& state) {
 | 
	
		
			
				|  |  | +  using FunctorType =
 | 
	
		
			
				|  |  | +      ceres::internal::CostFunctionToFunctor<Linear1CostFunction>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double parameter_block1[] = {1.};
 | 
	
		
			
				|  |  | +  double* parameters[] = {parameter_block1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double jacobian1[1];
 | 
	
		
			
				|  |  | +  double residuals[1];
 | 
	
		
			
				|  |  | +  double* jacobians[] = {jacobian1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::unique_ptr<ceres::CostFunction> cost_function(
 | 
	
		
			
				|  |  | +      new ceres::AutoDiffCostFunction<FunctorType, 1, 1>(new FunctorType()));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  while (state.KeepRunning()) {
 | 
	
		
			
				|  |  | +    cost_function->Evaluate(parameters, residuals, jacobians);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +BENCHMARK(BM_Linear1AutoDiff);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#ifdef WITH_CODE_GENERATION
 | 
	
		
			
				|  |  | +static void BM_Linear10CodeGen(benchmark::State& state) {
 | 
	
		
			
				|  |  | +  double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
 | 
	
		
			
				|  |  | +  double* parameters[] = {parameter_block1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double jacobian1[10 * 10];
 | 
	
		
			
				|  |  | +  double residuals[10];
 | 
	
		
			
				|  |  | +  double* jacobians[] = {jacobian1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::unique_ptr<ceres::CostFunction> cost_function(
 | 
	
		
			
				|  |  | +      new Linear10CostFunction());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  while (state.KeepRunning()) {
 | 
	
		
			
				|  |  | +    cost_function->Evaluate(parameters, residuals, jacobians);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +BENCHMARK(BM_Linear10CodeGen);
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +static void BM_Linear10AutoDiff(benchmark::State& state) {
 | 
	
		
			
				|  |  | +  using FunctorType =
 | 
	
		
			
				|  |  | +      ceres::internal::CostFunctionToFunctor<Linear10CostFunction>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
 | 
	
		
			
				|  |  | +  double* parameters[] = {parameter_block1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double jacobian1[10 * 10];
 | 
	
		
			
				|  |  | +  double residuals[10];
 | 
	
		
			
				|  |  | +  double* jacobians[] = {jacobian1};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::unique_ptr<ceres::CostFunction> cost_function(
 | 
	
		
			
				|  |  | +      new ceres::AutoDiffCostFunction<FunctorType, 10, 10>(new FunctorType()));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  while (state.KeepRunning()) {
 | 
	
		
			
				|  |  | +    cost_function->Evaluate(parameters, residuals, jacobians);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +BENCHMARK(BM_Linear10AutoDiff);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +}  // namespace ceres
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +BENCHMARK_MAIN();
 |