|  | @@ -0,0 +1,221 @@
 | 
	
		
			
				|  |  | +// Ceres Solver - A fast non-linear least squares minimizer
 | 
	
		
			
				|  |  | +// Copyright 2013 Google Inc. All rights reserved.
 | 
	
		
			
				|  |  | +// http://code.google.com/p/ceres-solver/
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Redistribution and use in source and binary forms, with or without
 | 
	
		
			
				|  |  | +// modification, are permitted provided that the following conditions are met:
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// * Redistributions of source code must retain the above copyright notice,
 | 
	
		
			
				|  |  | +//   this list of conditions and the following disclaimer.
 | 
	
		
			
				|  |  | +// * Redistributions in binary form must reproduce the above copyright notice,
 | 
	
		
			
				|  |  | +//   this list of conditions and the following disclaimer in the documentation
 | 
	
		
			
				|  |  | +//   and/or other materials provided with the distribution.
 | 
	
		
			
				|  |  | +// * Neither the name of Google Inc. nor the names of its contributors may be
 | 
	
		
			
				|  |  | +//   used to endorse or promote products derived from this software without
 | 
	
		
			
				|  |  | +//   specific prior written permission.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
	
		
			
				|  |  | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
	
		
			
				|  |  | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
	
		
			
				|  |  | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
	
		
			
				|  |  | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
	
		
			
				|  |  | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
	
		
			
				|  |  | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
	
		
			
				|  |  | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
	
		
			
				|  |  | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
	
		
			
				|  |  | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
	
		
			
				|  |  | +// POSSIBILITY OF SUCH DAMAGE.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Author: mierle@gmail.com (Keir Mierle)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include "ceres/c_api.h"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include <cmath>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include "glog/logging.h"
 | 
	
		
			
				|  |  | +#include "gtest/gtest.h"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Duplicated from curve_fitting.cc.
 | 
	
		
			
				|  |  | +int num_observations = 67;
 | 
	
		
			
				|  |  | +double data[] = {
 | 
	
		
			
				|  |  | +  0.000000e+00, 1.133898e+00,
 | 
	
		
			
				|  |  | +  7.500000e-02, 1.334902e+00,
 | 
	
		
			
				|  |  | +  1.500000e-01, 1.213546e+00,
 | 
	
		
			
				|  |  | +  2.250000e-01, 1.252016e+00,
 | 
	
		
			
				|  |  | +  3.000000e-01, 1.392265e+00,
 | 
	
		
			
				|  |  | +  3.750000e-01, 1.314458e+00,
 | 
	
		
			
				|  |  | +  4.500000e-01, 1.472541e+00,
 | 
	
		
			
				|  |  | +  5.250000e-01, 1.536218e+00,
 | 
	
		
			
				|  |  | +  6.000000e-01, 1.355679e+00,
 | 
	
		
			
				|  |  | +  6.750000e-01, 1.463566e+00,
 | 
	
		
			
				|  |  | +  7.500000e-01, 1.490201e+00,
 | 
	
		
			
				|  |  | +  8.250000e-01, 1.658699e+00,
 | 
	
		
			
				|  |  | +  9.000000e-01, 1.067574e+00,
 | 
	
		
			
				|  |  | +  9.750000e-01, 1.464629e+00,
 | 
	
		
			
				|  |  | +  1.050000e+00, 1.402653e+00,
 | 
	
		
			
				|  |  | +  1.125000e+00, 1.713141e+00,
 | 
	
		
			
				|  |  | +  1.200000e+00, 1.527021e+00,
 | 
	
		
			
				|  |  | +  1.275000e+00, 1.702632e+00,
 | 
	
		
			
				|  |  | +  1.350000e+00, 1.423899e+00,
 | 
	
		
			
				|  |  | +  1.425000e+00, 1.543078e+00,
 | 
	
		
			
				|  |  | +  1.500000e+00, 1.664015e+00,
 | 
	
		
			
				|  |  | +  1.575000e+00, 1.732484e+00,
 | 
	
		
			
				|  |  | +  1.650000e+00, 1.543296e+00,
 | 
	
		
			
				|  |  | +  1.725000e+00, 1.959523e+00,
 | 
	
		
			
				|  |  | +  1.800000e+00, 1.685132e+00,
 | 
	
		
			
				|  |  | +  1.875000e+00, 1.951791e+00,
 | 
	
		
			
				|  |  | +  1.950000e+00, 2.095346e+00,
 | 
	
		
			
				|  |  | +  2.025000e+00, 2.361460e+00,
 | 
	
		
			
				|  |  | +  2.100000e+00, 2.169119e+00,
 | 
	
		
			
				|  |  | +  2.175000e+00, 2.061745e+00,
 | 
	
		
			
				|  |  | +  2.250000e+00, 2.178641e+00,
 | 
	
		
			
				|  |  | +  2.325000e+00, 2.104346e+00,
 | 
	
		
			
				|  |  | +  2.400000e+00, 2.584470e+00,
 | 
	
		
			
				|  |  | +  2.475000e+00, 1.914158e+00,
 | 
	
		
			
				|  |  | +  2.550000e+00, 2.368375e+00,
 | 
	
		
			
				|  |  | +  2.625000e+00, 2.686125e+00,
 | 
	
		
			
				|  |  | +  2.700000e+00, 2.712395e+00,
 | 
	
		
			
				|  |  | +  2.775000e+00, 2.499511e+00,
 | 
	
		
			
				|  |  | +  2.850000e+00, 2.558897e+00,
 | 
	
		
			
				|  |  | +  2.925000e+00, 2.309154e+00,
 | 
	
		
			
				|  |  | +  3.000000e+00, 2.869503e+00,
 | 
	
		
			
				|  |  | +  3.075000e+00, 3.116645e+00,
 | 
	
		
			
				|  |  | +  3.150000e+00, 3.094907e+00,
 | 
	
		
			
				|  |  | +  3.225000e+00, 2.471759e+00,
 | 
	
		
			
				|  |  | +  3.300000e+00, 3.017131e+00,
 | 
	
		
			
				|  |  | +  3.375000e+00, 3.232381e+00,
 | 
	
		
			
				|  |  | +  3.450000e+00, 2.944596e+00,
 | 
	
		
			
				|  |  | +  3.525000e+00, 3.385343e+00,
 | 
	
		
			
				|  |  | +  3.600000e+00, 3.199826e+00,
 | 
	
		
			
				|  |  | +  3.675000e+00, 3.423039e+00,
 | 
	
		
			
				|  |  | +  3.750000e+00, 3.621552e+00,
 | 
	
		
			
				|  |  | +  3.825000e+00, 3.559255e+00,
 | 
	
		
			
				|  |  | +  3.900000e+00, 3.530713e+00,
 | 
	
		
			
				|  |  | +  3.975000e+00, 3.561766e+00,
 | 
	
		
			
				|  |  | +  4.050000e+00, 3.544574e+00,
 | 
	
		
			
				|  |  | +  4.125000e+00, 3.867945e+00,
 | 
	
		
			
				|  |  | +  4.200000e+00, 4.049776e+00,
 | 
	
		
			
				|  |  | +  4.275000e+00, 3.885601e+00,
 | 
	
		
			
				|  |  | +  4.350000e+00, 4.110505e+00,
 | 
	
		
			
				|  |  | +  4.425000e+00, 4.345320e+00,
 | 
	
		
			
				|  |  | +  4.500000e+00, 4.161241e+00,
 | 
	
		
			
				|  |  | +  4.575000e+00, 4.363407e+00,
 | 
	
		
			
				|  |  | +  4.650000e+00, 4.161576e+00,
 | 
	
		
			
				|  |  | +  4.725000e+00, 4.619728e+00,
 | 
	
		
			
				|  |  | +  4.800000e+00, 4.737410e+00,
 | 
	
		
			
				|  |  | +  4.875000e+00, 4.727863e+00,
 | 
	
		
			
				|  |  | +  4.950000e+00, 4.669206e+00,
 | 
	
		
			
				|  |  | +};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// A test cost function, similar to the one in curve_fitting.c.
 | 
	
		
			
				|  |  | +int exponential_residual(void* user_data,
 | 
	
		
			
				|  |  | +                         double** parameters,
 | 
	
		
			
				|  |  | +                         double* residuals,
 | 
	
		
			
				|  |  | +                         double** jacobians) {
 | 
	
		
			
				|  |  | +  double* measurement = (double*) user_data;
 | 
	
		
			
				|  |  | +  double x = measurement[0];
 | 
	
		
			
				|  |  | +  double y = measurement[1];
 | 
	
		
			
				|  |  | +  double m = parameters[0][0];
 | 
	
		
			
				|  |  | +  double c = parameters[1][0];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  residuals[0] = y - exp(m * x + c);
 | 
	
		
			
				|  |  | +  if (jacobians == NULL) {
 | 
	
		
			
				|  |  | +    return 1;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  if (jacobians[0] != NULL) {
 | 
	
		
			
				|  |  | +    jacobians[0][0] = - x * exp(m * x + c);  // dr/dm
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  if (jacobians[1] != NULL) {
 | 
	
		
			
				|  |  | +    jacobians[1][0] =     - exp(m * x + c);  // dr/dc
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  return 1;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +namespace ceres {
 | 
	
		
			
				|  |  | +namespace internal {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(C_API, SimpleEndToEndTest) {
 | 
	
		
			
				|  |  | +  double m = 0.0;
 | 
	
		
			
				|  |  | +  double c = 0.0;
 | 
	
		
			
				|  |  | +  double *parameter_pointers[] = { &m, &c };
 | 
	
		
			
				|  |  | +  int parameter_sizes[] = { 1, 1 };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  ceres_problem_t* problem = ceres_create_problem();
 | 
	
		
			
				|  |  | +  for (int i = 0; i < num_observations; ++i) {
 | 
	
		
			
				|  |  | +    ceres_problem_add_residual_block(
 | 
	
		
			
				|  |  | +        problem,
 | 
	
		
			
				|  |  | +        exponential_residual,  // Cost function
 | 
	
		
			
				|  |  | +        &data[2 * i],          // Points to the (x,y) measurement
 | 
	
		
			
				|  |  | +        NULL,                  // Loss function
 | 
	
		
			
				|  |  | +        NULL,                  // Loss function user data
 | 
	
		
			
				|  |  | +        1,                     // Number of residuals
 | 
	
		
			
				|  |  | +        2,                     // Number of parameter blocks
 | 
	
		
			
				|  |  | +        parameter_sizes,
 | 
	
		
			
				|  |  | +        parameter_pointers);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  ceres_solve(problem);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_NEAR(0.3, m, 0.02);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR(0.1, c, 0.04);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  ceres_free_problem(problem);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +template<typename T>
 | 
	
		
			
				|  |  | +class ScopedSetValue {
 | 
	
		
			
				|  |  | + public:
 | 
	
		
			
				|  |  | +  ScopedSetValue(T* variable, T new_value)
 | 
	
		
			
				|  |  | +      : variable_(variable), old_value_(*variable) {
 | 
	
		
			
				|  |  | +    *variable = new_value;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  ~ScopedSetValue() {
 | 
	
		
			
				|  |  | +    *variable_ = old_value_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + private:
 | 
	
		
			
				|  |  | +  T* variable_;
 | 
	
		
			
				|  |  | +  T old_value_;
 | 
	
		
			
				|  |  | +};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +TEST(C_API, LossFunctions) {
 | 
	
		
			
				|  |  | +  double m = 0.2;
 | 
	
		
			
				|  |  | +  double c = 0.03;
 | 
	
		
			
				|  |  | +  double *parameter_pointers[] = { &m, &c };
 | 
	
		
			
				|  |  | +  int parameter_sizes[] = { 1, 1 };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Create two outliers, but be careful to leave the data intact.
 | 
	
		
			
				|  |  | +  ScopedSetValue<double> outlier1x(&data[12], 2.5);
 | 
	
		
			
				|  |  | +  ScopedSetValue<double> outlier1y(&data[13], 1.0e3);
 | 
	
		
			
				|  |  | +  ScopedSetValue<double> outlier2x(&data[14], 3.2);
 | 
	
		
			
				|  |  | +  ScopedSetValue<double> outlier2y(&data[15], 30e3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Create a cauchy cost function, and reuse it many times.
 | 
	
		
			
				|  |  | +  void* cauchy_loss_data =
 | 
	
		
			
				|  |  | +      ceres_create_cauchy_loss_function_data(5.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  ceres_problem_t* problem = ceres_create_problem();
 | 
	
		
			
				|  |  | +  for (int i = 0; i < num_observations; ++i) {
 | 
	
		
			
				|  |  | +    ceres_problem_add_residual_block(
 | 
	
		
			
				|  |  | +        problem,
 | 
	
		
			
				|  |  | +        exponential_residual,  // Cost function
 | 
	
		
			
				|  |  | +        &data[2 * i],          // Points to the (x,y) measurement
 | 
	
		
			
				|  |  | +        ceres_stock_loss_function,
 | 
	
		
			
				|  |  | +        cauchy_loss_data,      // Loss function user data
 | 
	
		
			
				|  |  | +        1,                     // Number of residuals
 | 
	
		
			
				|  |  | +        2,                     // Number of parameter blocks
 | 
	
		
			
				|  |  | +        parameter_sizes,
 | 
	
		
			
				|  |  | +        parameter_pointers);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  ceres_solve(problem);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  EXPECT_NEAR(0.3, m, 0.02);
 | 
	
		
			
				|  |  | +  EXPECT_NEAR(0.1, c, 0.04);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  ceres_free_stock_loss_function_data(cauchy_loss_data);
 | 
	
		
			
				|  |  | +  ceres_free_problem(problem);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +}  // namespace internal
 | 
	
		
			
				|  |  | +}  // namespace ceres
 |