| 
					
				 | 
			
			
				@@ -0,0 +1,106 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// Ceres Solver - A fast non-linear least squares minimizer 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// Copyright 2012 Google Inc. All rights reserved. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// http://code.google.com/p/ceres-solver/ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// Redistribution and use in source and binary forms, with or without 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// modification, are permitted provided that the following conditions are met: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// * Redistributions of source code must retain the above copyright notice, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//   this list of conditions and the following disclaimer. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// * Redistributions in binary form must reproduce the above copyright notice, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//   this list of conditions and the following disclaimer in the documentation 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//   and/or other materials provided with the distribution. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// * Neither the name of Google Inc. nor the names of its contributors may be 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//   used to endorse or promote products derived from this software without 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//   specific prior written permission. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// POSSIBILITY OF SUCH DAMAGE. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+// Author: sameeragarwal@google.com (Sameer Agarwal) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#include "glog/logging.h" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#include "ceres/lbfgs.h" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#include "ceres/internal/eigen.h" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+namespace ceres { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+namespace internal { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+LBFGS::LBFGS(int num_parameters, int max_num_corrections) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    : num_parameters_(num_parameters), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      max_num_corrections_(max_num_corrections), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      num_corrections_(0), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      diagonal_(1.0), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      delta_x_history_(num_parameters, max_num_corrections), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      delta_gradient_history_(num_parameters, max_num_corrections), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      delta_x_dot_delta_gradient_(max_num_corrections) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+bool LBFGS::Update(const Vector& delta_x, const Vector& delta_gradient) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  if (delta_x_dot_delta_gradient <= 1e-10) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    VLOG(2) << "Skipping LBFGS Update. " << delta_x_dot_delta_gradient; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return false; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  if (num_corrections_ == max_num_corrections_) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // TODO(sameeragarwal): This can be done more efficiently using 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // a circular buffer/indexing scheme, but for simplicity we will 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // do the expensive copy for now. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    delta_x_history_.block(0, 0, num_parameters_, max_num_corrections_ - 2) = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        delta_x_history_ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .block(0, 1, num_parameters_, max_num_corrections_ - 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    delta_gradient_history_ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .block(0, 0, num_parameters_, max_num_corrections_ - 2) = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        delta_gradient_history_ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .block(0, 1, num_parameters_, max_num_corrections_ - 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    delta_x_dot_delta_gradient_.head(num_corrections_ - 2) = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        delta_x_dot_delta_gradient_.tail(num_corrections_ - 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ++num_corrections_; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  delta_x_history_.col(num_corrections_ - 1) = delta_x; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  delta_gradient_history_.col(num_corrections_ - 1) = delta_gradient; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  delta_x_dot_delta_gradient_(num_corrections_ - 1) = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      delta_x_dot_delta_gradient; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  diagonal_ = delta_x_dot_delta_gradient / delta_gradient.squaredNorm(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  return true; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+void LBFGS::RightMultiply(const double* x_ptr, double* y_ptr) const { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  ConstVectorRef gradient(x_ptr, num_parameters_); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  VectorRef search_direction(y_ptr, num_parameters_); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  search_direction = gradient; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  Vector alpha(num_corrections_); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  for (int i = num_corrections_ - 1; i >= 0; --i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    alpha(i) = delta_x_history_.col(i).dot(search_direction) / 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        delta_x_dot_delta_gradient_(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    search_direction -= alpha(i) * delta_gradient_history_.col(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  search_direction *= diagonal_; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  for (int i = 0; i < num_corrections_; ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    const double beta = delta_gradient_history_.col(i).dot(search_direction) / 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        delta_x_dot_delta_gradient_(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    search_direction += delta_x_history_.col(i) * (alpha(i) - beta); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+}  // namespace internal 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+}  // namespace ceres 
			 |