| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// This file contains string processing functions related to// numeric values.#include "absl/strings/numbers.h"#include <algorithm>#include <cassert>#include <cfloat>  // for DBL_DIG and FLT_DIG#include <cmath>   // for HUGE_VAL#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <iterator>#include <limits>#include <memory>#include <utility>#include "absl/base/attributes.h"#include "absl/base/internal/raw_logging.h"#include "absl/numeric/bits.h"#include "absl/strings/ascii.h"#include "absl/strings/charconv.h"#include "absl/strings/escaping.h"#include "absl/strings/internal/memutil.h"#include "absl/strings/match.h"#include "absl/strings/str_cat.h"namespace absl {ABSL_NAMESPACE_BEGINbool SimpleAtof(absl::string_view str, float* out) {  *out = 0.0;  str = StripAsciiWhitespace(str);  // std::from_chars doesn't accept an initial +, but SimpleAtof does, so if one  // is present, skip it, while avoiding accepting "+-0" as valid.  if (!str.empty() && str[0] == '+') {    str.remove_prefix(1);    if (!str.empty() && str[0] == '-') {      return false;    }  }  auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);  if (result.ec == std::errc::invalid_argument) {    return false;  }  if (result.ptr != str.data() + str.size()) {    // not all non-whitespace characters consumed    return false;  }  // from_chars() with DR 3081's current wording will return max() on  // overflow.  SimpleAtof returns infinity instead.  if (result.ec == std::errc::result_out_of_range) {    if (*out > 1.0) {      *out = std::numeric_limits<float>::infinity();    } else if (*out < -1.0) {      *out = -std::numeric_limits<float>::infinity();    }  }  return true;}bool SimpleAtod(absl::string_view str, double* out) {  *out = 0.0;  str = StripAsciiWhitespace(str);  // std::from_chars doesn't accept an initial +, but SimpleAtod does, so if one  // is present, skip it, while avoiding accepting "+-0" as valid.  if (!str.empty() && str[0] == '+') {    str.remove_prefix(1);    if (!str.empty() && str[0] == '-') {      return false;    }  }  auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);  if (result.ec == std::errc::invalid_argument) {    return false;  }  if (result.ptr != str.data() + str.size()) {    // not all non-whitespace characters consumed    return false;  }  // from_chars() with DR 3081's current wording will return max() on  // overflow.  SimpleAtod returns infinity instead.  if (result.ec == std::errc::result_out_of_range) {    if (*out > 1.0) {      *out = std::numeric_limits<double>::infinity();    } else if (*out < -1.0) {      *out = -std::numeric_limits<double>::infinity();    }  }  return true;}bool SimpleAtob(absl::string_view str, bool* out) {  ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");  if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||      EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||      EqualsIgnoreCase(str, "1")) {    *out = true;    return true;  }  if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||      EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||      EqualsIgnoreCase(str, "0")) {    *out = false;    return true;  }  return false;}// ----------------------------------------------------------------------// FastIntToBuffer() overloads//// Like the Fast*ToBuffer() functions above, these are intended for speed.// Unlike the Fast*ToBuffer() functions, however, these functions write// their output to the beginning of the buffer.  The caller is responsible// for ensuring that the buffer has enough space to hold the output.//// Returns a pointer to the end of the string (i.e. the null character// terminating the string).// ----------------------------------------------------------------------namespace {// Used to optimize printing a decimal number's final digit.const char one_ASCII_final_digits[10][2] {  {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},  {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},};}  // namespacechar* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) {  uint32_t digits;  // The idea of this implementation is to trim the number of divides to as few  // as possible, and also reducing memory stores and branches, by going in  // steps of two digits at a time rather than one whenever possible.  // The huge-number case is first, in the hopes that the compiler will output  // that case in one branch-free block of code, and only output conditional  // branches into it from below.  if (i >= 1000000000) {     // >= 1,000,000,000    digits = i / 100000000;  //      100,000,000    i -= digits * 100000000;    PutTwoDigits(digits, buffer);    buffer += 2;  lt100_000_000:    digits = i / 1000000;  // 1,000,000    i -= digits * 1000000;    PutTwoDigits(digits, buffer);    buffer += 2;  lt1_000_000:    digits = i / 10000;  // 10,000    i -= digits * 10000;    PutTwoDigits(digits, buffer);    buffer += 2;  lt10_000:    digits = i / 100;    i -= digits * 100;    PutTwoDigits(digits, buffer);    buffer += 2; lt100:    digits = i;    PutTwoDigits(digits, buffer);    buffer += 2;    *buffer = 0;    return buffer;  }  if (i < 100) {    digits = i;    if (i >= 10) goto lt100;    memcpy(buffer, one_ASCII_final_digits[i], 2);    return buffer + 1;  }  if (i < 10000) {  //    10,000    if (i >= 1000) goto lt10_000;    digits = i / 100;    i -= digits * 100;    *buffer++ = '0' + digits;    goto lt100;  }  if (i < 1000000) {  //    1,000,000    if (i >= 100000) goto lt1_000_000;    digits = i / 10000;  //    10,000    i -= digits * 10000;    *buffer++ = '0' + digits;    goto lt10_000;  }  if (i < 100000000) {  //    100,000,000    if (i >= 10000000) goto lt100_000_000;    digits = i / 1000000;  //   1,000,000    i -= digits * 1000000;    *buffer++ = '0' + digits;    goto lt1_000_000;  }  // we already know that i < 1,000,000,000  digits = i / 100000000;  //   100,000,000  i -= digits * 100000000;  *buffer++ = '0' + digits;  goto lt100_000_000;}char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) {  uint32_t u = i;  if (i < 0) {    *buffer++ = '-';    // We need to do the negation in modular (i.e., "unsigned")    // arithmetic; MSVC++ apprently warns for plain "-u", so    // we write the equivalent expression "0 - u" instead.    u = 0 - u;  }  return numbers_internal::FastIntToBuffer(u, buffer);}char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) {  uint32_t u32 = static_cast<uint32_t>(i);  if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer);  // Here we know i has at least 10 decimal digits.  uint64_t top_1to11 = i / 1000000000;  u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);  uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);  if (top_1to11_32 == top_1to11) {    buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer);  } else {    // top_1to11 has more than 32 bits too; print it in two steps.    uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);    uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);    buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer);    PutTwoDigits(mid_2, buffer);    buffer += 2;  }  // We have only 9 digits now, again the maximum uint32_t can handle fully.  uint32_t digits = u32 / 10000000;  // 10,000,000  u32 -= digits * 10000000;  PutTwoDigits(digits, buffer);  buffer += 2;  digits = u32 / 100000;  // 100,000  u32 -= digits * 100000;  PutTwoDigits(digits, buffer);  buffer += 2;  digits = u32 / 1000;  // 1,000  u32 -= digits * 1000;  PutTwoDigits(digits, buffer);  buffer += 2;  digits = u32 / 10;  u32 -= digits * 10;  PutTwoDigits(digits, buffer);  buffer += 2;  memcpy(buffer, one_ASCII_final_digits[u32], 2);  return buffer + 1;}char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) {  uint64_t u = i;  if (i < 0) {    *buffer++ = '-';    u = 0 - u;  }  return numbers_internal::FastIntToBuffer(u, buffer);}// Given a 128-bit number expressed as a pair of uint64_t, high half first,// return that number multiplied by the given 32-bit value.  If the result is// too large to fit in a 128-bit number, divide it by 2 until it fits.static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,                                           uint32_t mul) {  uint64_t bits0_31 = num.second & 0xFFFFFFFF;  uint64_t bits32_63 = num.second >> 32;  uint64_t bits64_95 = num.first & 0xFFFFFFFF;  uint64_t bits96_127 = num.first >> 32;  // The picture so far: each of these 64-bit values has only the lower 32 bits  // filled in.  // bits96_127:          [ 00000000 xxxxxxxx ]  // bits64_95:                    [ 00000000 xxxxxxxx ]  // bits32_63:                             [ 00000000 xxxxxxxx ]  // bits0_31:                                       [ 00000000 xxxxxxxx ]  bits0_31 *= mul;  bits32_63 *= mul;  bits64_95 *= mul;  bits96_127 *= mul;  // Now the top halves may also have value, though all 64 of their bits will  // never be set at the same time, since they are a result of a 32x32 bit  // multiply.  This makes the carry calculation slightly easier.  // bits96_127:          [ mmmmmmmm | mmmmmmmm ]  // bits64_95:                    [ | mmmmmmmm mmmmmmmm | ]  // bits32_63:                      |        [ mmmmmmmm | mmmmmmmm ]  // bits0_31:                       |                 [ | mmmmmmmm mmmmmmmm ]  // eventually:        [ bits128_up | ...bits64_127.... | ..bits0_63... ]  uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);  uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +                        (bits0_63 < bits0_31);  uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);  if (bits128_up == 0) return {bits64_127, bits0_63};  auto shift = static_cast<unsigned>(bit_width(bits128_up));  uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));  uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));  return {hi, lo};}// Compute num * 5 ^ expfive, and return the first 128 bits of the result,// where the first bit is always a one.  So PowFive(1, 0) starts 0b100000,// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {  std::pair<uint64_t, uint64_t> result = {num, 0};  while (expfive >= 13) {    // 5^13 is the highest power of five that will fit in a 32-bit integer.    result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);    expfive -= 13;  }  constexpr int powers_of_five[13] = {      1,      5,      5 * 5,      5 * 5 * 5,      5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};  result = Mul32(result, powers_of_five[expfive & 15]);  int shift = countl_zero(result.first);  if (shift != 0) {    result.first = (result.first << shift) + (result.second >> (64 - shift));    result.second = (result.second << shift);  }  return result;}struct ExpDigits {  int32_t exponent;  char digits[6];};// SplitToSix converts value, a positive double-precision floating-point number,// into a base-10 exponent and 6 ASCII digits, where the first digit is never// zero.  For example, SplitToSix(1) returns an exponent of zero and a digits// array of {'1', '0', '0', '0', '0', '0'}.  If value is exactly halfway between// two possible representations, e.g. value = 100000.5, then "round to even" is// performed.static ExpDigits SplitToSix(const double value) {  ExpDigits exp_dig;  int exp = 5;  double d = value;  // First step: calculate a close approximation of the output, where the  // value d will be between 100,000 and 999,999, representing the digits  // in the output ASCII array, and exp is the base-10 exponent.  It would be  // faster to use a table here, and to look up the base-2 exponent of value,  // however value is an IEEE-754 64-bit number, so the table would have 2,000  // entries, which is not cache-friendly.  if (d >= 999999.5) {    if (d >= 1e+261) exp += 256, d *= 1e-256;    if (d >= 1e+133) exp += 128, d *= 1e-128;    if (d >= 1e+69) exp += 64, d *= 1e-64;    if (d >= 1e+37) exp += 32, d *= 1e-32;    if (d >= 1e+21) exp += 16, d *= 1e-16;    if (d >= 1e+13) exp += 8, d *= 1e-8;    if (d >= 1e+9) exp += 4, d *= 1e-4;    if (d >= 1e+7) exp += 2, d *= 1e-2;    if (d >= 1e+6) exp += 1, d *= 1e-1;  } else {    if (d < 1e-250) exp -= 256, d *= 1e256;    if (d < 1e-122) exp -= 128, d *= 1e128;    if (d < 1e-58) exp -= 64, d *= 1e64;    if (d < 1e-26) exp -= 32, d *= 1e32;    if (d < 1e-10) exp -= 16, d *= 1e16;    if (d < 1e-2) exp -= 8, d *= 1e8;    if (d < 1e+2) exp -= 4, d *= 1e4;    if (d < 1e+4) exp -= 2, d *= 1e2;    if (d < 1e+5) exp -= 1, d *= 1e1;  }  // At this point, d is in the range [99999.5..999999.5) and exp is in the  // range [-324..308]. Since we need to round d up, we want to add a half  // and truncate.  // However, the technique above may have lost some precision, due to its  // repeated multiplication by constants that each may be off by half a bit  // of precision.  This only matters if we're close to the edge though.  // Since we'd like to know if the fractional part of d is close to a half,  // we multiply it by 65536 and see if the fractional part is close to 32768.  // (The number doesn't have to be a power of two,but powers of two are faster)  uint64_t d64k = d * 65536;  int dddddd;  // A 6-digit decimal integer.  if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {    // OK, it's fairly likely that precision was lost above, which is    // not a surprise given only 52 mantissa bits are available.  Therefore    // redo the calculation using 128-bit numbers.  (64 bits are not enough).    // Start out with digits rounded down; maybe add one below.    dddddd = static_cast<int>(d64k / 65536);    // mantissa is a 64-bit integer representing M.mmm... * 2^63.  The actual    // value we're representing, of course, is M.mmm... * 2^exp2.    int exp2;    double m = std::frexp(value, &exp2);    uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);    // std::frexp returns an m value in the range [0.5, 1.0), however we    // can't multiply it by 2^64 and convert to an integer because some FPUs    // throw an exception when converting an number higher than 2^63 into an    // integer - even an unsigned 64-bit integer!  Fortunately it doesn't matter    // since m only has 52 significant bits anyway.    mantissa <<= 1;    exp2 -= 64;  // not needed, but nice for debugging    // OK, we are here to compare:    //     (dddddd + 0.5) * 10^(exp-5)  vs.  mantissa * 2^exp2    // so we can round up dddddd if appropriate.  Those values span the full    // range of 600 orders of magnitude of IEE 64-bit floating-point.    // Fortunately, we already know they are very close, so we don't need to    // track the base-2 exponent of both sides.  This greatly simplifies the    // the math since the 2^exp2 calculation is unnecessary and the power-of-10    // calculation can become a power-of-5 instead.    std::pair<uint64_t, uint64_t> edge, val;    if (exp >= 6) {      // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa      // Since we're tossing powers of two, 2 * dddddd + 1 is the      // same as dddddd + 0.5      edge = PowFive(2 * dddddd + 1, exp - 5);      val.first = mantissa;      val.second = 0;    } else {      // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did      // above because (exp - 5) is negative.  So we compare (dddddd + 0.5) to      // mantissa * 5 ^ (5 - exp)      edge = PowFive(2 * dddddd + 1, 0);      val = PowFive(mantissa, 5 - exp);    }    // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,    //        val.second, edge.first, edge.second);    if (val > edge) {      dddddd++;    } else if (val == edge) {      dddddd += (dddddd & 1);    }  } else {    // Here, we are not close to the edge.    dddddd = static_cast<int>((d64k + 32768) / 65536);  }  if (dddddd == 1000000) {    dddddd = 100000;    exp += 1;  }  exp_dig.exponent = exp;  int two_digits = dddddd / 10000;  dddddd -= two_digits * 10000;  numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]);  two_digits = dddddd / 100;  dddddd -= two_digits * 100;  numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]);  numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]);  return exp_dig;}// Helper function for fast formatting of floating-point.// The result is the same as "%g", a.k.a. "%.6g".size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {  static_assert(std::numeric_limits<float>::is_iec559,                "IEEE-754/IEC-559 support only");  char* out = buffer;  // we write data to out, incrementing as we go, but                       // FloatToBuffer always returns the address of the buffer                       // passed in.  if (std::isnan(d)) {    strcpy(out, "nan");  // NOLINT(runtime/printf)    return 3;  }  if (d == 0) {  // +0 and -0 are handled here    if (std::signbit(d)) *out++ = '-';    *out++ = '0';    *out = 0;    return out - buffer;  }  if (d < 0) {    *out++ = '-';    d = -d;  }  if (std::isinf(d)) {    strcpy(out, "inf");  // NOLINT(runtime/printf)    return out + 3 - buffer;  }  auto exp_dig = SplitToSix(d);  int exp = exp_dig.exponent;  const char* digits = exp_dig.digits;  out[0] = '0';  out[1] = '.';  switch (exp) {    case 5:      memcpy(out, &digits[0], 6), out += 6;      *out = 0;      return out - buffer;    case 4:      memcpy(out, &digits[0], 5), out += 5;      if (digits[5] != '0') {        *out++ = '.';        *out++ = digits[5];      }      *out = 0;      return out - buffer;    case 3:      memcpy(out, &digits[0], 4), out += 4;      if ((digits[5] | digits[4]) != '0') {        *out++ = '.';        *out++ = digits[4];        if (digits[5] != '0') *out++ = digits[5];      }      *out = 0;      return out - buffer;    case 2:      memcpy(out, &digits[0], 3), out += 3;      *out++ = '.';      memcpy(out, &digits[3], 3);      out += 3;      while (out[-1] == '0') --out;      if (out[-1] == '.') --out;      *out = 0;      return out - buffer;    case 1:      memcpy(out, &digits[0], 2), out += 2;      *out++ = '.';      memcpy(out, &digits[2], 4);      out += 4;      while (out[-1] == '0') --out;      if (out[-1] == '.') --out;      *out = 0;      return out - buffer;    case 0:      memcpy(out, &digits[0], 1), out += 1;      *out++ = '.';      memcpy(out, &digits[1], 5);      out += 5;      while (out[-1] == '0') --out;      if (out[-1] == '.') --out;      *out = 0;      return out - buffer;    case -4:      out[2] = '0';      ++out;      ABSL_FALLTHROUGH_INTENDED;    case -3:      out[2] = '0';      ++out;      ABSL_FALLTHROUGH_INTENDED;    case -2:      out[2] = '0';      ++out;      ABSL_FALLTHROUGH_INTENDED;    case -1:      out += 2;      memcpy(out, &digits[0], 6);      out += 6;      while (out[-1] == '0') --out;      *out = 0;      return out - buffer;  }  assert(exp < -4 || exp >= 6);  out[0] = digits[0];  assert(out[1] == '.');  out += 2;  memcpy(out, &digits[1], 5), out += 5;  while (out[-1] == '0') --out;  if (out[-1] == '.') --out;  *out++ = 'e';  if (exp > 0) {    *out++ = '+';  } else {    *out++ = '-';    exp = -exp;  }  if (exp > 99) {    int dig1 = exp / 100;    exp -= dig1 * 100;    *out++ = '0' + dig1;  }  PutTwoDigits(exp, out);  out += 2;  *out = 0;  return out - buffer;}namespace {// Represents integer values of digits.// Uses 36 to indicate an invalid character since we support// bases up to 36.static const int8_t kAsciiToInt[256] = {    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s.    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5,    6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,    36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,    24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};// Parse the sign and optional hex or oct prefix in text.inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/,                                     int* base_ptr /*inout*/,                                     bool* negative_ptr /*output*/) {  if (text->data() == nullptr) {    return false;  }  const char* start = text->data();  const char* end = start + text->size();  int base = *base_ptr;  // Consume whitespace.  while (start < end && absl::ascii_isspace(start[0])) {    ++start;  }  while (start < end && absl::ascii_isspace(end[-1])) {    --end;  }  if (start >= end) {    return false;  }  // Consume sign.  *negative_ptr = (start[0] == '-');  if (*negative_ptr || start[0] == '+') {    ++start;    if (start >= end) {      return false;    }  }  // Consume base-dependent prefix.  //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10  //  base 16: "0x" -> base 16  // Also validate the base.  if (base == 0) {    if (end - start >= 2 && start[0] == '0' &&        (start[1] == 'x' || start[1] == 'X')) {      base = 16;      start += 2;      if (start >= end) {        // "0x" with no digits after is invalid.        return false;      }    } else if (end - start >= 1 && start[0] == '0') {      base = 8;      start += 1;    } else {      base = 10;    }  } else if (base == 16) {    if (end - start >= 2 && start[0] == '0' &&        (start[1] == 'x' || start[1] == 'X')) {      start += 2;      if (start >= end) {        // "0x" with no digits after is invalid.        return false;      }    }  } else if (base >= 2 && base <= 36) {    // okay  } else {    return false;  }  *text = absl::string_view(start, end - start);  *base_ptr = base;  return true;}// Consume digits.//// The classic loop:////   for each digit//     value = value * base + digit//   value *= sign//// The classic loop needs overflow checking.  It also fails on the most// negative integer, -2147483648 in 32-bit two's complement representation.//// My improved loop:////  if (!negative)//    for each digit//      value = value * base//      value = value + digit//  else//    for each digit//      value = value * base//      value = value - digit//// Overflow checking becomes simple.// Lookup tables per IntType:// vmax/base and vmin/base are precomputed because division costs at least 8ns.// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a// struct of arrays) would probably be better in terms of d-cache for the most// commonly used bases.template <typename IntType>struct LookupTables {  ABSL_CONST_INIT static const IntType kVmaxOverBase[];  ABSL_CONST_INIT static const IntType kVminOverBase[];};// An array initializer macro for X/base where base in [0, 36].// However, note that lookups for base in [0, 1] should never happen because// base has been validated to be in [2, 36] by safe_parse_sign_and_base().#define X_OVER_BASE_INITIALIZER(X)                                        \  {                                                                       \    0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \        X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18,   \        X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26,   \        X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34,   \        X / 35, X / 36,                                                   \  }// This kVmaxOverBase is generated with//  for (int base = 2; base < 37; ++base) {//    absl::uint128 max = std::numeric_limits<absl::uint128>::max();//    auto result = max / base;//    std::cout << "    MakeUint128(" << absl::Uint128High64(result) << "u, "//              << absl::Uint128Low64(result) << "u),\n";//  }// See https://godbolt.org/z/aneYsb//// uint128& operator/=(uint128) is not constexpr, so hardcode the resulting// array to avoid a static initializer.template<>const uint128 LookupTables<uint128>::kVmaxOverBase[] = {    0,    0,    MakeUint128(9223372036854775807u, 18446744073709551615u),    MakeUint128(6148914691236517205u, 6148914691236517205u),    MakeUint128(4611686018427387903u, 18446744073709551615u),    MakeUint128(3689348814741910323u, 3689348814741910323u),    MakeUint128(3074457345618258602u, 12297829382473034410u),    MakeUint128(2635249153387078802u, 5270498306774157604u),    MakeUint128(2305843009213693951u, 18446744073709551615u),    MakeUint128(2049638230412172401u, 14347467612885206812u),    MakeUint128(1844674407370955161u, 11068046444225730969u),    MakeUint128(1676976733973595601u, 8384883669867978007u),    MakeUint128(1537228672809129301u, 6148914691236517205u),    MakeUint128(1418980313362273201u, 4256940940086819603u),    MakeUint128(1317624576693539401u, 2635249153387078802u),    MakeUint128(1229782938247303441u, 1229782938247303441u),    MakeUint128(1152921504606846975u, 18446744073709551615u),    MakeUint128(1085102592571150095u, 1085102592571150095u),    MakeUint128(1024819115206086200u, 16397105843297379214u),    MakeUint128(970881267037344821u, 16504981539634861972u),    MakeUint128(922337203685477580u, 14757395258967641292u),    MakeUint128(878416384462359600u, 14054662151397753612u),    MakeUint128(838488366986797800u, 13415813871788764811u),    MakeUint128(802032351030850070u, 4812194106185100421u),    MakeUint128(768614336404564650u, 12297829382473034410u),    MakeUint128(737869762948382064u, 11805916207174113034u),    MakeUint128(709490156681136600u, 11351842506898185609u),    MakeUint128(683212743470724133u, 17080318586768103348u),    MakeUint128(658812288346769700u, 10540996613548315209u),    MakeUint128(636094623231363848u, 15266270957552732371u),    MakeUint128(614891469123651720u, 9838263505978427528u),    MakeUint128(595056260442243600u, 9520900167075897608u),    MakeUint128(576460752303423487u, 18446744073709551615u),    MakeUint128(558992244657865200u, 8943875914525843207u),    MakeUint128(542551296285575047u, 9765923333140350855u),    MakeUint128(527049830677415760u, 8432797290838652167u),    MakeUint128(512409557603043100u, 8198552921648689607u),};// This kVmaxOverBase generated with//   for (int base = 2; base < 37; ++base) {//    absl::int128 max = std::numeric_limits<absl::int128>::max();//    auto result = max / base;//    std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", "//              << absl::Int128Low64(result) << "u),\n";//  }// See https://godbolt.org/z/7djYWz//// int128& operator/=(int128) is not constexpr, so hardcode the resulting array// to avoid a static initializer.template<>const int128 LookupTables<int128>::kVmaxOverBase[] = {    0,    0,    MakeInt128(4611686018427387903, 18446744073709551615u),    MakeInt128(3074457345618258602, 12297829382473034410u),    MakeInt128(2305843009213693951, 18446744073709551615u),    MakeInt128(1844674407370955161, 11068046444225730969u),    MakeInt128(1537228672809129301, 6148914691236517205u),    MakeInt128(1317624576693539401, 2635249153387078802u),    MakeInt128(1152921504606846975, 18446744073709551615u),    MakeInt128(1024819115206086200, 16397105843297379214u),    MakeInt128(922337203685477580, 14757395258967641292u),    MakeInt128(838488366986797800, 13415813871788764811u),    MakeInt128(768614336404564650, 12297829382473034410u),    MakeInt128(709490156681136600, 11351842506898185609u),    MakeInt128(658812288346769700, 10540996613548315209u),    MakeInt128(614891469123651720, 9838263505978427528u),    MakeInt128(576460752303423487, 18446744073709551615u),    MakeInt128(542551296285575047, 9765923333140350855u),    MakeInt128(512409557603043100, 8198552921648689607u),    MakeInt128(485440633518672410, 17475862806672206794u),    MakeInt128(461168601842738790, 7378697629483820646u),    MakeInt128(439208192231179800, 7027331075698876806u),    MakeInt128(419244183493398900, 6707906935894382405u),    MakeInt128(401016175515425035, 2406097053092550210u),    MakeInt128(384307168202282325, 6148914691236517205u),    MakeInt128(368934881474191032, 5902958103587056517u),    MakeInt128(354745078340568300, 5675921253449092804u),    MakeInt128(341606371735362066, 17763531330238827482u),    MakeInt128(329406144173384850, 5270498306774157604u),    MakeInt128(318047311615681924, 7633135478776366185u),    MakeInt128(307445734561825860, 4919131752989213764u),    MakeInt128(297528130221121800, 4760450083537948804u),    MakeInt128(288230376151711743, 18446744073709551615u),    MakeInt128(279496122328932600, 4471937957262921603u),    MakeInt128(271275648142787523, 14106333703424951235u),    MakeInt128(263524915338707880, 4216398645419326083u),    MakeInt128(256204778801521550, 4099276460824344803u),};// This kVminOverBase generated with//  for (int base = 2; base < 37; ++base) {//    absl::int128 min = std::numeric_limits<absl::int128>::min();//    auto result = min / base;//    std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", "//              << absl::Int128Low64(result) << "u),\n";//  }//// See https://godbolt.org/z/7djYWz//// int128& operator/=(int128) is not constexpr, so hardcode the resulting array// to avoid a static initializer.template<>const int128 LookupTables<int128>::kVminOverBase[] = {    0,    0,    MakeInt128(-4611686018427387904, 0u),    MakeInt128(-3074457345618258603, 6148914691236517206u),    MakeInt128(-2305843009213693952, 0u),    MakeInt128(-1844674407370955162, 7378697629483820647u),    MakeInt128(-1537228672809129302, 12297829382473034411u),    MakeInt128(-1317624576693539402, 15811494920322472814u),    MakeInt128(-1152921504606846976, 0u),    MakeInt128(-1024819115206086201, 2049638230412172402u),    MakeInt128(-922337203685477581, 3689348814741910324u),    MakeInt128(-838488366986797801, 5030930201920786805u),    MakeInt128(-768614336404564651, 6148914691236517206u),    MakeInt128(-709490156681136601, 7094901566811366007u),    MakeInt128(-658812288346769701, 7905747460161236407u),    MakeInt128(-614891469123651721, 8608480567731124088u),    MakeInt128(-576460752303423488, 0u),    MakeInt128(-542551296285575048, 8680820740569200761u),    MakeInt128(-512409557603043101, 10248191152060862009u),    MakeInt128(-485440633518672411, 970881267037344822u),    MakeInt128(-461168601842738791, 11068046444225730970u),    MakeInt128(-439208192231179801, 11419412998010674810u),    MakeInt128(-419244183493398901, 11738837137815169211u),    MakeInt128(-401016175515425036, 16040647020617001406u),    MakeInt128(-384307168202282326, 12297829382473034411u),    MakeInt128(-368934881474191033, 12543785970122495099u),    MakeInt128(-354745078340568301, 12770822820260458812u),    MakeInt128(-341606371735362067, 683212743470724134u),    MakeInt128(-329406144173384851, 13176245766935394012u),    MakeInt128(-318047311615681925, 10813608594933185431u),    MakeInt128(-307445734561825861, 13527612320720337852u),    MakeInt128(-297528130221121801, 13686293990171602812u),    MakeInt128(-288230376151711744, 0u),    MakeInt128(-279496122328932601, 13974806116446630013u),    MakeInt128(-271275648142787524, 4340410370284600381u),    MakeInt128(-263524915338707881, 14230345428290225533u),    MakeInt128(-256204778801521551, 14347467612885206813u),};template <typename IntType>const IntType LookupTables<IntType>::kVmaxOverBase[] =    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());template <typename IntType>const IntType LookupTables<IntType>::kVminOverBase[] =    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());#undef X_OVER_BASE_INITIALIZERtemplate <typename IntType>inline bool safe_parse_positive_int(absl::string_view text, int base,                                    IntType* value_p) {  IntType value = 0;  const IntType vmax = std::numeric_limits<IntType>::max();  assert(vmax > 0);  assert(base >= 0);  assert(vmax >= static_cast<IntType>(base));  const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];  assert(base < 2 ||         std::numeric_limits<IntType>::max() / base == vmax_over_base);  const char* start = text.data();  const char* end = start + text.size();  // loop over digits  for (; start < end; ++start) {    unsigned char c = static_cast<unsigned char>(start[0]);    int digit = kAsciiToInt[c];    if (digit >= base) {      *value_p = value;      return false;    }    if (value > vmax_over_base) {      *value_p = vmax;      return false;    }    value *= base;    if (value > vmax - digit) {      *value_p = vmax;      return false;    }    value += digit;  }  *value_p = value;  return true;}template <typename IntType>inline bool safe_parse_negative_int(absl::string_view text, int base,                                    IntType* value_p) {  IntType value = 0;  const IntType vmin = std::numeric_limits<IntType>::min();  assert(vmin < 0);  assert(vmin <= 0 - base);  IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];  assert(base < 2 ||         std::numeric_limits<IntType>::min() / base == vmin_over_base);  // 2003 c++ standard [expr.mul]  // "... the sign of the remainder is implementation-defined."  // Although (vmin/base)*base + vmin%base is always vmin.  // 2011 c++ standard tightens the spec but we cannot rely on it.  // TODO(junyer): Handle this in the lookup table generation.  if (vmin % base > 0) {    vmin_over_base += 1;  }  const char* start = text.data();  const char* end = start + text.size();  // loop over digits  for (; start < end; ++start) {    unsigned char c = static_cast<unsigned char>(start[0]);    int digit = kAsciiToInt[c];    if (digit >= base) {      *value_p = value;      return false;    }    if (value < vmin_over_base) {      *value_p = vmin;      return false;    }    value *= base;    if (value < vmin + digit) {      *value_p = vmin;      return false;    }    value -= digit;  }  *value_p = value;  return true;}// Input format based on POSIX.1-2008 strtol// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.htmltemplate <typename IntType>inline bool safe_int_internal(absl::string_view text, IntType* value_p,                              int base) {  *value_p = 0;  bool negative;  if (!safe_parse_sign_and_base(&text, &base, &negative)) {    return false;  }  if (!negative) {    return safe_parse_positive_int(text, base, value_p);  } else {    return safe_parse_negative_int(text, base, value_p);  }}template <typename IntType>inline bool safe_uint_internal(absl::string_view text, IntType* value_p,                               int base) {  *value_p = 0;  bool negative;  if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {    return false;  }  return safe_parse_positive_int(text, base, value_p);}}  // anonymous namespacenamespace numbers_internal {// Digit conversion.ABSL_CONST_INIT ABSL_DLL const char kHexChar[] =    "0123456789abcdef";ABSL_CONST_INIT ABSL_DLL const char kHexTable[513] =    "000102030405060708090a0b0c0d0e0f"    "101112131415161718191a1b1c1d1e1f"    "202122232425262728292a2b2c2d2e2f"    "303132333435363738393a3b3c3d3e3f"    "404142434445464748494a4b4c4d4e4f"    "505152535455565758595a5b5c5d5e5f"    "606162636465666768696a6b6c6d6e6f"    "707172737475767778797a7b7c7d7e7f"    "808182838485868788898a8b8c8d8e8f"    "909192939495969798999a9b9c9d9e9f"    "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"    "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"    "c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"    "d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"    "e0e1e2e3e4e5e6e7e8e9eaebecedeeef"    "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";ABSL_CONST_INIT ABSL_DLL const char two_ASCII_digits[100][2] = {    {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},    {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},    {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},    {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},    {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},    {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},    {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},    {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},    {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},    {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},    {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},    {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},    {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},    {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},    {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},    {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},    {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};bool safe_strto32_base(absl::string_view text, int32_t* value, int base) {  return safe_int_internal<int32_t>(text, value, base);}bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {  return safe_int_internal<int64_t>(text, value, base);}bool safe_strto128_base(absl::string_view text, int128* value, int base) {  return safe_int_internal<absl::int128>(text, value, base);}bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {  return safe_uint_internal<uint32_t>(text, value, base);}bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) {  return safe_uint_internal<uint64_t>(text, value, base);}bool safe_strtou128_base(absl::string_view text, uint128* value, int base) {  return safe_uint_internal<absl::uint128>(text, value, base);}}  // namespace numbers_internalABSL_NAMESPACE_END}  // namespace absl
 |