| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/uniform_int_distribution.h"#include <cmath>#include <cstdint>#include <iterator>#include <random>#include <sstream>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"#include "absl/base/internal/raw_logging.h"#include "absl/random/internal/chi_square.h"#include "absl/random/internal/distribution_test_util.h"#include "absl/random/internal/pcg_engine.h"#include "absl/random/internal/sequence_urbg.h"#include "absl/random/random.h"#include "absl/strings/str_cat.h"namespace {template <typename IntType>class UniformIntDistributionTest : public ::testing::Test {};using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,                                  uint32_t, int64_t, uint64_t>;TYPED_TEST_SUITE(UniformIntDistributionTest, IntTypes);TYPED_TEST(UniformIntDistributionTest, ParamSerializeTest) {  // This test essentially ensures that the parameters serialize,  // not that the values generated cover the full range.  using Limits = std::numeric_limits<TypeParam>;  using param_type =      typename absl::uniform_int_distribution<TypeParam>::param_type;  const TypeParam kMin = std::is_unsigned<TypeParam>::value ? 37 : -105;  const TypeParam kNegOneOrZero = std::is_unsigned<TypeParam>::value ? 0 : -1;  constexpr int kCount = 1000;  absl::InsecureBitGen gen;  for (const auto& param : {           param_type(),           param_type(2, 2),  // Same           param_type(9, 32),           param_type(kMin, 115),           param_type(kNegOneOrZero, Limits::max()),           param_type(Limits::min(), Limits::max()),           param_type(Limits::lowest(), Limits::max()),           param_type(Limits::min() + 1, Limits::max() - 1),       }) {    const auto a = param.a();    const auto b = param.b();    absl::uniform_int_distribution<TypeParam> before(a, b);    EXPECT_EQ(before.a(), param.a());    EXPECT_EQ(before.b(), param.b());    {      // Initialize via param_type      absl::uniform_int_distribution<TypeParam> via_param(param);      EXPECT_EQ(via_param, before);    }    // Initialize via iostreams    std::stringstream ss;    ss << before;    absl::uniform_int_distribution<TypeParam> after(Limits::min() + 3,                                                    Limits::max() - 5);    EXPECT_NE(before.a(), after.a());    EXPECT_NE(before.b(), after.b());    EXPECT_NE(before.param(), after.param());    EXPECT_NE(before, after);    ss >> after;    EXPECT_EQ(before.a(), after.a());    EXPECT_EQ(before.b(), after.b());    EXPECT_EQ(before.param(), after.param());    EXPECT_EQ(before, after);    // Smoke test.    auto sample_min = after.max();    auto sample_max = after.min();    for (int i = 0; i < kCount; i++) {      auto sample = after(gen);      EXPECT_GE(sample, after.min());      EXPECT_LE(sample, after.max());      if (sample > sample_max) {        sample_max = sample;      }      if (sample < sample_min) {        sample_min = sample;      }    }    std::string msg = absl::StrCat("Range: ", +sample_min, ", ", +sample_max);    ABSL_RAW_LOG(INFO, "%s", msg.c_str());  }}TYPED_TEST(UniformIntDistributionTest, ViolatesPreconditionsDeathTest) {#if GTEST_HAS_DEATH_TEST  // Hi < Lo  EXPECT_DEBUG_DEATH({ absl::uniform_int_distribution<TypeParam> dist(10, 1); },                     "");#endif  // GTEST_HAS_DEATH_TEST#if defined(NDEBUG)  // opt-mode, for invalid parameters, will generate a garbage value,  // but should not enter an infinite loop.  absl::InsecureBitGen gen;  absl::uniform_int_distribution<TypeParam> dist(10, 1);  auto x = dist(gen);  // Any value will generate a non-empty string.  EXPECT_FALSE(absl::StrCat(+x).empty()) << x;#endif  // NDEBUG}TYPED_TEST(UniformIntDistributionTest, TestMoments) {  constexpr int kSize = 100000;  using Limits = std::numeric_limits<TypeParam>;  using param_type =      typename absl::uniform_int_distribution<TypeParam>::param_type;  // We use a fixed bit generator for distribution accuracy tests.  This allows  // these tests to be deterministic, while still testing the qualify of the  // implementation.  absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};  std::vector<double> values(kSize);  for (const auto& param :       {param_type(0, Limits::max()), param_type(13, 127)}) {    absl::uniform_int_distribution<TypeParam> dist(param);    for (int i = 0; i < kSize; i++) {      const auto sample = dist(rng);      ASSERT_LE(dist.param().a(), sample);      ASSERT_GE(dist.param().b(), sample);      values[i] = sample;    }    auto moments = absl::random_internal::ComputeDistributionMoments(values);    const double a = dist.param().a();    const double b = dist.param().b();    const double n = (b - a + 1);    const double mean = (a + b) / 2;    const double var = ((b - a + 1) * (b - a + 1) - 1) / 12;    const double kurtosis = 3 - 6 * (n * n + 1) / (5 * (n * n - 1));    // TODO(ahh): this is not the right bound    // empirically validated with --runs_per_test=10000.    EXPECT_NEAR(mean, moments.mean, 0.01 * var);    EXPECT_NEAR(var, moments.variance, 0.015 * var);    EXPECT_NEAR(0.0, moments.skewness, 0.025);    EXPECT_NEAR(kurtosis, moments.kurtosis, 0.02 * kurtosis);  }}TYPED_TEST(UniformIntDistributionTest, ChiSquaredTest50) {  using absl::random_internal::kChiSquared;  constexpr size_t kTrials = 1000;  constexpr int kBuckets = 50;  // inclusive, so actally +1  constexpr double kExpected =      static_cast<double>(kTrials) / static_cast<double>(kBuckets);  // Empirically validated with --runs_per_test=10000.  const int kThreshold =      absl::random_internal::ChiSquareValue(kBuckets, 0.999999);  const TypeParam min = std::is_unsigned<TypeParam>::value ? 37 : -37;  const TypeParam max = min + kBuckets;  // We use a fixed bit generator for distribution accuracy tests.  This allows  // these tests to be deterministic, while still testing the qualify of the  // implementation.  absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};  absl::uniform_int_distribution<TypeParam> dist(min, max);  std::vector<int32_t> counts(kBuckets + 1, 0);  for (size_t i = 0; i < kTrials; i++) {    auto x = dist(rng);    counts[x - min]++;  }  double chi_square = absl::random_internal::ChiSquareWithExpected(      std::begin(counts), std::end(counts), kExpected);  if (chi_square > kThreshold) {    double p_value =        absl::random_internal::ChiSquarePValue(chi_square, kBuckets);    // Chi-squared test failed. Output does not appear to be uniform.    std::string msg;    for (const auto& a : counts) {      absl::StrAppend(&msg, a, "\n");    }    absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");    absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",                    kThreshold);    ABSL_RAW_LOG(INFO, "%s", msg.c_str());    FAIL() << msg;  }}TEST(UniformIntDistributionTest, StabilityTest) {  // absl::uniform_int_distribution stability relies only on integer operations.  absl::random_internal::sequence_urbg urbg(      {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});  std::vector<int> output(12);  {    absl::uniform_int_distribution<int32_t> dist(0, 4);    for (auto& v : output) {      v = dist(urbg);    }  }  EXPECT_EQ(12, urbg.invocations());  EXPECT_THAT(output, testing::ElementsAre(4, 4, 3, 2, 1, 0, 1, 4, 3, 1, 3, 1));  {    urbg.reset();    absl::uniform_int_distribution<int32_t> dist(0, 100);    for (auto& v : output) {      v = dist(urbg);    }  }  EXPECT_EQ(12, urbg.invocations());  EXPECT_THAT(output, testing::ElementsAre(97, 86, 75, 41, 36, 16, 38, 92, 67,                                           30, 80, 38));  {    urbg.reset();    absl::uniform_int_distribution<int32_t> dist(0, 10000);    for (auto& v : output) {      v = dist(urbg);    }  }  EXPECT_EQ(12, urbg.invocations());  EXPECT_THAT(output, testing::ElementsAre(9648, 8562, 7439, 4089, 3571, 1602,                                           3813, 9195, 6641, 2986, 7956, 3765));}}  // namespace
 |