| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_#define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_#include <cassert>#include <cmath>#include <istream>#include <limits>#include <type_traits>#include "absl/meta/type_traits.h"#include "absl/random/internal/fast_uniform_bits.h"#include "absl/random/internal/generate_real.h"#include "absl/random/internal/iostream_state_saver.h"namespace absl {ABSL_NAMESPACE_BEGIN// absl::exponential_distribution:// Generates a number conforming to an exponential distribution and is// equivalent to the standard [rand.dist.pois.exp] distribution.template <typename RealType = double>class exponential_distribution { public:  using result_type = RealType;  class param_type {   public:    using distribution_type = exponential_distribution;    explicit param_type(result_type lambda = 1) : lambda_(lambda) {      assert(lambda > 0);      neg_inv_lambda_ = -result_type(1) / lambda_;    }    result_type lambda() const { return lambda_; }    friend bool operator==(const param_type& a, const param_type& b) {      return a.lambda_ == b.lambda_;    }    friend bool operator!=(const param_type& a, const param_type& b) {      return !(a == b);    }   private:    friend class exponential_distribution;    result_type lambda_;    result_type neg_inv_lambda_;    static_assert(        std::is_floating_point<RealType>::value,        "Class-template absl::exponential_distribution<> must be parameterized "        "using a floating-point type.");  };  exponential_distribution() : exponential_distribution(1) {}  explicit exponential_distribution(result_type lambda) : param_(lambda) {}  explicit exponential_distribution(const param_type& p) : param_(p) {}  void reset() {}  // Generating functions  template <typename URBG>  result_type operator()(URBG& g) {  // NOLINT(runtime/references)    return (*this)(g, param_);  }  template <typename URBG>  result_type operator()(URBG& g,  // NOLINT(runtime/references)                         const param_type& p);  param_type param() const { return param_; }  void param(const param_type& p) { param_ = p; }  result_type(min)() const { return 0; }  result_type(max)() const {    return std::numeric_limits<result_type>::infinity();  }  result_type lambda() const { return param_.lambda(); }  friend bool operator==(const exponential_distribution& a,                         const exponential_distribution& b) {    return a.param_ == b.param_;  }  friend bool operator!=(const exponential_distribution& a,                         const exponential_distribution& b) {    return a.param_ != b.param_;  } private:  param_type param_;  random_internal::FastUniformBits<uint64_t> fast_u64_;};// --------------------------------------------------------------------------// Implementation details follow// --------------------------------------------------------------------------template <typename RealType>template <typename URBG>typename exponential_distribution<RealType>::result_typeexponential_distribution<RealType>::operator()(    URBG& g,  // NOLINT(runtime/references)    const param_type& p) {  using random_internal::GenerateNegativeTag;  using random_internal::GenerateRealFromBits;  using real_type =      absl::conditional_t<std::is_same<RealType, float>::value, float, double>;  const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,                                             false>(fast_u64_(g));  // U(-1, 0)  // log1p(-x) is mathematically equivalent to log(1 - x) but has more  // accuracy for x near zero.  return p.neg_inv_lambda_ * std::log1p(u);}template <typename CharT, typename Traits, typename RealType>std::basic_ostream<CharT, Traits>& operator<<(    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)    const exponential_distribution<RealType>& x) {  auto saver = random_internal::make_ostream_state_saver(os);  os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);  os << x.lambda();  return os;}template <typename CharT, typename Traits, typename RealType>std::basic_istream<CharT, Traits>& operator>>(    std::basic_istream<CharT, Traits>& is,    // NOLINT(runtime/references)    exponential_distribution<RealType>& x) {  // NOLINT(runtime/references)  using result_type = typename exponential_distribution<RealType>::result_type;  using param_type = typename exponential_distribution<RealType>::param_type;  result_type lambda;  auto saver = random_internal::make_istream_state_saver(is);  lambda = random_internal::read_floating_point<result_type>(is);  if (!is.fail()) {    x.param(param_type(lambda));  }  return is;}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 |