| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// Benchmarks for absl random distributions as well as a selection of the// C++ standard library random distributions.#include <algorithm>#include <cstddef>#include <cstdint>#include <initializer_list>#include <iterator>#include <limits>#include <random>#include <type_traits>#include <vector>#include "absl/base/macros.h"#include "absl/meta/type_traits.h"#include "absl/random/bernoulli_distribution.h"#include "absl/random/beta_distribution.h"#include "absl/random/exponential_distribution.h"#include "absl/random/gaussian_distribution.h"#include "absl/random/internal/fast_uniform_bits.h"#include "absl/random/internal/randen_engine.h"#include "absl/random/log_uniform_int_distribution.h"#include "absl/random/poisson_distribution.h"#include "absl/random/random.h"#include "absl/random/uniform_int_distribution.h"#include "absl/random/uniform_real_distribution.h"#include "absl/random/zipf_distribution.h"#include "benchmark/benchmark.h"namespace {// Seed data to avoid reading random_device() for benchmarks.uint32_t kSeedData[] = {    0x1B510052, 0x9A532915, 0xD60F573F, 0xBC9BC6E4, 0x2B60A476, 0x81E67400,    0x08BA6FB5, 0x571BE91F, 0xF296EC6B, 0x2A0DD915, 0xB6636521, 0xE7B9F9B6,    0xFF34052E, 0xC5855664, 0x53B02D5D, 0xA99F8FA1, 0x08BA4799, 0x6E85076A,    0x4B7A70E9, 0xB5B32944, 0xDB75092E, 0xC4192623, 0xAD6EA6B0, 0x49A7DF7D,    0x9CEE60B8, 0x8FEDB266, 0xECAA8C71, 0x699A18FF, 0x5664526C, 0xC2B19EE1,    0x193602A5, 0x75094C29, 0xA0591340, 0xE4183A3E, 0x3F54989A, 0x5B429D65,    0x6B8FE4D6, 0x99F73FD6, 0xA1D29C07, 0xEFE830F5, 0x4D2D38E6, 0xF0255DC1,    0x4CDD2086, 0x8470EB26, 0x6382E9C6, 0x021ECC5E, 0x09686B3F, 0x3EBAEFC9,    0x3C971814, 0x6B6A70A1, 0x687F3584, 0x52A0E286, 0x13198A2E, 0x03707344,};// PrecompiledSeedSeq provides kSeedData to a conforming// random engine to speed initialization in the benchmarks.class PrecompiledSeedSeq { public:  using result_type = uint32_t;  PrecompiledSeedSeq() {}  template <typename Iterator>  PrecompiledSeedSeq(Iterator begin, Iterator end) {}  template <typename T>  PrecompiledSeedSeq(std::initializer_list<T> il) {}  template <typename OutIterator>  void generate(OutIterator begin, OutIterator end) {    static size_t idx = 0;    for (; begin != end; begin++) {      *begin = kSeedData[idx++];      if (idx >= ABSL_ARRAYSIZE(kSeedData)) {        idx = 0;      }    }  }  size_t size() const { return ABSL_ARRAYSIZE(kSeedData); }  template <typename OutIterator>  void param(OutIterator out) const {    std::copy(std::begin(kSeedData), std::end(kSeedData), out);  }};// use_default_initialization<T> indicates whether the random engine// T must be default initialized, or whether we may initialize it using// a seed sequence. This is used because some engines do not accept seed// sequence-based initialization.template <typename E>using use_default_initialization = std::false_type;// make_engine<T, SSeq> returns a random_engine which is initialized,// either via the default constructor, when use_default_initialization<T>// is true, or via the indicated seed sequence, SSeq.template <typename Engine, typename SSeq = PrecompiledSeedSeq>typename absl::enable_if_t<!use_default_initialization<Engine>::value, Engine>make_engine() {  // Initialize the random engine using the seed sequence SSeq, which  // is constructed from the precompiled seed data.  SSeq seq(std::begin(kSeedData), std::end(kSeedData));  return Engine(seq);}template <typename Engine, typename SSeq = PrecompiledSeedSeq>typename absl::enable_if_t<use_default_initialization<Engine>::value, Engine>make_engine() {  // Initialize the random engine using the default constructor.  return Engine();}template <typename Engine, typename SSeq>void BM_Construct(benchmark::State& state) {  for (auto _ : state) {    auto rng = make_engine<Engine, SSeq>();    benchmark::DoNotOptimize(rng());  }}template <typename Engine>void BM_Direct(benchmark::State& state) {  using value_type = typename Engine::result_type;  // Direct use of the URBG.  auto rng = make_engine<Engine>();  for (auto _ : state) {    benchmark::DoNotOptimize(rng());  }  state.SetBytesProcessed(sizeof(value_type) * state.iterations());}template <typename Engine>void BM_Generate(benchmark::State& state) {  // std::generate makes a copy of the RNG; thus this tests the  // copy-constructor efficiency.  using value_type = typename Engine::result_type;  std::vector<value_type> v(64);  auto rng = make_engine<Engine>();  while (state.KeepRunningBatch(64)) {    std::generate(std::begin(v), std::end(v), rng);  }}template <typename Engine, size_t elems>void BM_Shuffle(benchmark::State& state) {  // Direct use of the Engine.  std::vector<uint32_t> v(elems);  while (state.KeepRunningBatch(elems)) {    auto rng = make_engine<Engine>();    std::shuffle(std::begin(v), std::end(v), rng);  }}template <typename Engine, size_t elems>void BM_ShuffleReuse(benchmark::State& state) {  // Direct use of the Engine.  std::vector<uint32_t> v(elems);  auto rng = make_engine<Engine>();  while (state.KeepRunningBatch(elems)) {    std::shuffle(std::begin(v), std::end(v), rng);  }}template <typename Engine, typename Dist, typename... Args>void BM_Dist(benchmark::State& state, Args&&... args) {  using value_type = typename Dist::result_type;  auto rng = make_engine<Engine>();  Dist dis{std::forward<Args>(args)...};  // Compare the following loop performance:  for (auto _ : state) {    benchmark::DoNotOptimize(dis(rng));  }  state.SetBytesProcessed(sizeof(value_type) * state.iterations());}template <typename Engine, typename Dist>void BM_Large(benchmark::State& state) {  using value_type = typename Dist::result_type;  volatile value_type kMin = 0;  volatile value_type kMax = std::numeric_limits<value_type>::max() / 2 + 1;  BM_Dist<Engine, Dist>(state, kMin, kMax);}template <typename Engine, typename Dist>void BM_Small(benchmark::State& state) {  using value_type = typename Dist::result_type;  volatile value_type kMin = 0;  volatile value_type kMax = std::numeric_limits<value_type>::max() / 64 + 1;  BM_Dist<Engine, Dist>(state, kMin, kMax);}template <typename Engine, typename Dist, int A>void BM_Bernoulli(benchmark::State& state) {  volatile double a = static_cast<double>(A) / 1000000;  BM_Dist<Engine, Dist>(state, a);}template <typename Engine, typename Dist, int A, int B>void BM_Beta(benchmark::State& state) {  using value_type = typename Dist::result_type;  volatile value_type a = static_cast<value_type>(A) / 100;  volatile value_type b = static_cast<value_type>(B) / 100;  BM_Dist<Engine, Dist>(state, a, b);}template <typename Engine, typename Dist, int A>void BM_Gamma(benchmark::State& state) {  using value_type = typename Dist::result_type;  volatile value_type a = static_cast<value_type>(A) / 100;  BM_Dist<Engine, Dist>(state, a);}template <typename Engine, typename Dist, int A = 100>void BM_Poisson(benchmark::State& state) {  volatile double a = static_cast<double>(A) / 100;  BM_Dist<Engine, Dist>(state, a);}template <typename Engine, typename Dist, int Q = 2, int V = 1>void BM_Zipf(benchmark::State& state) {  using value_type = typename Dist::result_type;  volatile double q = Q;  volatile double v = V;  BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v);}template <typename Engine, typename Dist>void BM_Thread(benchmark::State& state) {  using value_type = typename Dist::result_type;  auto rng = make_engine<Engine>();  Dist dis{};  for (auto _ : state) {    benchmark::DoNotOptimize(dis(rng));  }  state.SetBytesProcessed(sizeof(value_type) * state.iterations());}// NOTES://// std::geometric_distribution is similar to the zipf distributions.// The algorithm for the geometric_distribution is, basically,// floor(log(1-X) / log(1-p))// Normal benchmark suite#define BM_BASIC(Engine)                                                       \  BENCHMARK_TEMPLATE(BM_Construct, Engine, PrecompiledSeedSeq);                \  BENCHMARK_TEMPLATE(BM_Construct, Engine, std::seed_seq);                     \  BENCHMARK_TEMPLATE(BM_Direct, Engine);                                       \  BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 10);                                  \  BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100);                                 \  BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000);                                \  BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100);                            \  BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000);                           \  BENCHMARK_TEMPLATE(BM_Dist, Engine,                                          \                     absl::random_internal::FastUniformBits<uint32_t>);        \  BENCHMARK_TEMPLATE(BM_Dist, Engine,                                          \                     absl::random_internal::FastUniformBits<uint64_t>);        \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int32_t>); \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int64_t>); \  BENCHMARK_TEMPLATE(BM_Dist, Engine,                                          \                     absl::uniform_int_distribution<int32_t>);                 \  BENCHMARK_TEMPLATE(BM_Dist, Engine,                                          \                     absl::uniform_int_distribution<int64_t>);                 \  BENCHMARK_TEMPLATE(BM_Large, Engine,                                         \                     std::uniform_int_distribution<int32_t>);                  \  BENCHMARK_TEMPLATE(BM_Large, Engine,                                         \                     std::uniform_int_distribution<int64_t>);                  \  BENCHMARK_TEMPLATE(BM_Large, Engine,                                         \                     absl::uniform_int_distribution<int32_t>);                 \  BENCHMARK_TEMPLATE(BM_Large, Engine,                                         \                     absl::uniform_int_distribution<int64_t>);                 \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<float>);  \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<double>); \  BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<float>); \  BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<double>)#define BM_COPY(Engine) BENCHMARK_TEMPLATE(BM_Generate, Engine)#define BM_THREAD(Engine)                                           \  BENCHMARK_TEMPLATE(BM_Thread, Engine,                             \                     absl::uniform_int_distribution<int64_t>)       \      ->ThreadPerCpu();                                             \  BENCHMARK_TEMPLATE(BM_Thread, Engine,                             \                     absl::uniform_real_distribution<double>)       \      ->ThreadPerCpu();                                             \  BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100)->ThreadPerCpu();      \  BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000)->ThreadPerCpu();     \  BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100)->ThreadPerCpu(); \  BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000)->ThreadPerCpu();#define BM_EXTENDED(Engine)                                                    \  /* -------------- Extended Uniform -----------------------*/                 \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     std::uniform_int_distribution<int32_t>);                  \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     std::uniform_int_distribution<int64_t>);                  \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     absl::uniform_int_distribution<int32_t>);                 \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     absl::uniform_int_distribution<int64_t>);                 \  BENCHMARK_TEMPLATE(BM_Small, Engine, std::uniform_real_distribution<float>); \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     std::uniform_real_distribution<double>);                  \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     absl::uniform_real_distribution<float>);                  \  BENCHMARK_TEMPLATE(BM_Small, Engine,                                         \                     absl::uniform_real_distribution<double>);                 \  /* -------------- Other -----------------------*/                            \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::normal_distribution<double>);       \  BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::gaussian_distribution<double>);    \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::exponential_distribution<double>);  \  BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::exponential_distribution<double>); \  BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>,   \                     100);                                                     \  BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>,  \                     100);                                                     \  BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>,   \                     10 * 100);                                                \  BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>,  \                     10 * 100);                                                \  BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>,   \                     13 * 100);                                                \  BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>,  \                     13 * 100);                                                \  BENCHMARK_TEMPLATE(BM_Dist, Engine,                                          \                     absl::log_uniform_int_distribution<int32_t>);             \  BENCHMARK_TEMPLATE(BM_Dist, Engine,                                          \                     absl::log_uniform_int_distribution<int64_t>);             \  BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>);   \  BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>);      \  BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2,    \                     3);                                                       \  BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution,        \                     257305);                                                  \  BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution,       \                     257305);                                                  \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 65,     \                     41);                                                      \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 99,     \                     330);                                                     \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 150,    \                     150);                                                     \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 410,    \                     580);                                                     \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 65, 41); \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 99,      \                     330);                                                     \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 150,     \                     150);                                                     \  BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 410,     \                     580);                                                     \  BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<float>, 199);   \  BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<double>, 199);// ABSL Recommended interfaces.BM_BASIC(absl::InsecureBitGen);  // === pcg64_2018_engineBM_BASIC(absl::BitGen);    // === randen_engine<uint64_t>.BM_THREAD(absl::BitGen);BM_EXTENDED(absl::BitGen);// Instantiate benchmarks for multiple engines.using randen_engine_64 = absl::random_internal::randen_engine<uint64_t>;using randen_engine_32 = absl::random_internal::randen_engine<uint32_t>;// Comparison interfaces.BM_BASIC(std::mt19937_64);BM_COPY(std::mt19937_64);BM_EXTENDED(std::mt19937_64);BM_BASIC(randen_engine_64);BM_COPY(randen_engine_64);BM_EXTENDED(randen_engine_64);BM_BASIC(std::mt19937);BM_COPY(std::mt19937);BM_BASIC(randen_engine_32);BM_COPY(randen_engine_32);}  // namespace
 |