| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815 | // Copyright 2019 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/container/inlined_vector.h"#include <algorithm>#include <forward_list>#include <list>#include <memory>#include <scoped_allocator>#include <sstream>#include <stdexcept>#include <string>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"#include "absl/base/attributes.h"#include "absl/base/internal/exception_testing.h"#include "absl/base/internal/raw_logging.h"#include "absl/base/macros.h"#include "absl/base/options.h"#include "absl/container/internal/counting_allocator.h"#include "absl/container/internal/test_instance_tracker.h"#include "absl/hash/hash_testing.h"#include "absl/memory/memory.h"#include "absl/strings/str_cat.h"namespace {using absl::container_internal::CountingAllocator;using absl::test_internal::CopyableMovableInstance;using absl::test_internal::CopyableOnlyInstance;using absl::test_internal::InstanceTracker;using testing::AllOf;using testing::Each;using testing::ElementsAre;using testing::ElementsAreArray;using testing::Eq;using testing::Gt;using testing::PrintToString;using IntVec = absl::InlinedVector<int, 8>;MATCHER_P(SizeIs, n, "") {  return testing::ExplainMatchResult(n, arg.size(), result_listener);}MATCHER_P(CapacityIs, n, "") {  return testing::ExplainMatchResult(n, arg.capacity(), result_listener);}MATCHER_P(ValueIs, e, "") {  return testing::ExplainMatchResult(e, arg.value(), result_listener);}// TODO(bsamwel): Add support for movable-only types.// Test fixture for typed tests on BaseCountedInstance derived classes, see// test_instance_tracker.h.template <typename T>class InstanceTest : public ::testing::Test {};TYPED_TEST_SUITE_P(InstanceTest);// A simple reference counted class to make sure that the proper elements are// destroyed in the erase(begin, end) test.class RefCounted { public:  RefCounted(int value, int* count) : value_(value), count_(count) { Ref(); }  RefCounted(const RefCounted& v) : value_(v.value_), count_(v.count_) {    Ref();  }  ~RefCounted() {    Unref();    count_ = nullptr;  }  friend void swap(RefCounted& a, RefCounted& b) {    using std::swap;    swap(a.value_, b.value_);    swap(a.count_, b.count_);  }  RefCounted& operator=(RefCounted v) {    using std::swap;    swap(*this, v);    return *this;  }  void Ref() const {    ABSL_RAW_CHECK(count_ != nullptr, "");    ++(*count_);  }  void Unref() const {    --(*count_);    ABSL_RAW_CHECK(*count_ >= 0, "");  }  int value_;  int* count_;};using RefCountedVec = absl::InlinedVector<RefCounted, 8>;// A class with a vtable pointerclass Dynamic { public:  virtual ~Dynamic() {}};using DynamicVec = absl::InlinedVector<Dynamic, 8>;// Append 0..len-1 to *vtemplate <typename Container>static void Fill(Container* v, int len, int offset = 0) {  for (int i = 0; i < len; i++) {    v->push_back(i + offset);  }}static IntVec Fill(int len, int offset = 0) {  IntVec v;  Fill(&v, len, offset);  return v;}TEST(IntVec, SimpleOps) {  for (int len = 0; len < 20; len++) {    IntVec v;    const IntVec& cv = v;  // const alias    Fill(&v, len);    EXPECT_EQ(len, v.size());    EXPECT_LE(len, v.capacity());    for (int i = 0; i < len; i++) {      EXPECT_EQ(i, v[i]);      EXPECT_EQ(i, v.at(i));    }    EXPECT_EQ(v.begin(), v.data());    EXPECT_EQ(cv.begin(), cv.data());    int counter = 0;    for (IntVec::iterator iter = v.begin(); iter != v.end(); ++iter) {      EXPECT_EQ(counter, *iter);      counter++;    }    EXPECT_EQ(counter, len);    counter = 0;    for (IntVec::const_iterator iter = v.begin(); iter != v.end(); ++iter) {      EXPECT_EQ(counter, *iter);      counter++;    }    EXPECT_EQ(counter, len);    counter = 0;    for (IntVec::const_iterator iter = v.cbegin(); iter != v.cend(); ++iter) {      EXPECT_EQ(counter, *iter);      counter++;    }    EXPECT_EQ(counter, len);    if (len > 0) {      EXPECT_EQ(0, v.front());      EXPECT_EQ(len - 1, v.back());      v.pop_back();      EXPECT_EQ(len - 1, v.size());      for (int i = 0; i < v.size(); ++i) {        EXPECT_EQ(i, v[i]);        EXPECT_EQ(i, v.at(i));      }    }  }}TEST(IntVec, PopBackNoOverflow) {  IntVec v = {1};  v.pop_back();  EXPECT_EQ(v.size(), 0);}TEST(IntVec, AtThrows) {  IntVec v = {1, 2, 3};  EXPECT_EQ(v.at(2), 3);  ABSL_BASE_INTERNAL_EXPECT_FAIL(v.at(3), std::out_of_range,                                 "failed bounds check");}TEST(IntVec, ReverseIterator) {  for (int len = 0; len < 20; len++) {    IntVec v;    Fill(&v, len);    int counter = len;    for (IntVec::reverse_iterator iter = v.rbegin(); iter != v.rend(); ++iter) {      counter--;      EXPECT_EQ(counter, *iter);    }    EXPECT_EQ(counter, 0);    counter = len;    for (IntVec::const_reverse_iterator iter = v.rbegin(); iter != v.rend();         ++iter) {      counter--;      EXPECT_EQ(counter, *iter);    }    EXPECT_EQ(counter, 0);    counter = len;    for (IntVec::const_reverse_iterator iter = v.crbegin(); iter != v.crend();         ++iter) {      counter--;      EXPECT_EQ(counter, *iter);    }    EXPECT_EQ(counter, 0);  }}TEST(IntVec, Erase) {  for (int len = 1; len < 20; len++) {    for (int i = 0; i < len; ++i) {      IntVec v;      Fill(&v, len);      v.erase(v.begin() + i);      EXPECT_EQ(len - 1, v.size());      for (int j = 0; j < i; ++j) {        EXPECT_EQ(j, v[j]);      }      for (int j = i; j < len - 1; ++j) {        EXPECT_EQ(j + 1, v[j]);      }    }  }}TEST(IntVec, Hardened) {  IntVec v;  Fill(&v, 10);  EXPECT_EQ(v[9], 9);#if !defined(NDEBUG) || ABSL_OPTION_HARDENED  EXPECT_DEATH_IF_SUPPORTED(v[10], "");  EXPECT_DEATH_IF_SUPPORTED(v[-1], "");#endif}// At the end of this test loop, the elements between [erase_begin, erase_end)// should have reference counts == 0, and all others elements should have// reference counts == 1.TEST(RefCountedVec, EraseBeginEnd) {  for (int len = 1; len < 20; ++len) {    for (int erase_begin = 0; erase_begin < len; ++erase_begin) {      for (int erase_end = erase_begin; erase_end <= len; ++erase_end) {        std::vector<int> counts(len, 0);        RefCountedVec v;        for (int i = 0; i < len; ++i) {          v.push_back(RefCounted(i, &counts[i]));        }        int erase_len = erase_end - erase_begin;        v.erase(v.begin() + erase_begin, v.begin() + erase_end);        EXPECT_EQ(len - erase_len, v.size());        // Check the elements before the first element erased.        for (int i = 0; i < erase_begin; ++i) {          EXPECT_EQ(i, v[i].value_);        }        // Check the elements after the first element erased.        for (int i = erase_begin; i < v.size(); ++i) {          EXPECT_EQ(i + erase_len, v[i].value_);        }        // Check that the elements at the beginning are preserved.        for (int i = 0; i < erase_begin; ++i) {          EXPECT_EQ(1, counts[i]);        }        // Check that the erased elements are destroyed        for (int i = erase_begin; i < erase_end; ++i) {          EXPECT_EQ(0, counts[i]);        }        // Check that the elements at the end are preserved.        for (int i = erase_end; i < len; ++i) {          EXPECT_EQ(1, counts[i]);        }      }    }  }}struct NoDefaultCtor {  explicit NoDefaultCtor(int) {}};struct NoCopy {  NoCopy() {}  NoCopy(const NoCopy&) = delete;};struct NoAssign {  NoAssign() {}  NoAssign& operator=(const NoAssign&) = delete;};struct MoveOnly {  MoveOnly() {}  MoveOnly(MoveOnly&&) = default;  MoveOnly& operator=(MoveOnly&&) = default;};TEST(InlinedVectorTest, NoDefaultCtor) {  absl::InlinedVector<NoDefaultCtor, 1> v(10, NoDefaultCtor(2));  (void)v;}TEST(InlinedVectorTest, NoCopy) {  absl::InlinedVector<NoCopy, 1> v(10);  (void)v;}TEST(InlinedVectorTest, NoAssign) {  absl::InlinedVector<NoAssign, 1> v(10);  (void)v;}TEST(InlinedVectorTest, MoveOnly) {  absl::InlinedVector<MoveOnly, 2> v;  v.push_back(MoveOnly{});  v.push_back(MoveOnly{});  v.push_back(MoveOnly{});  v.erase(v.begin());  v.push_back(MoveOnly{});  v.erase(v.begin(), v.begin() + 1);  v.insert(v.begin(), MoveOnly{});  v.emplace(v.begin());  v.emplace(v.begin(), MoveOnly{});}TEST(InlinedVectorTest, Noexcept) {  EXPECT_TRUE(std::is_nothrow_move_constructible<IntVec>::value);  EXPECT_TRUE((std::is_nothrow_move_constructible<               absl::InlinedVector<MoveOnly, 2>>::value));  struct MoveCanThrow {    MoveCanThrow(MoveCanThrow&&) {}  };  EXPECT_EQ(absl::default_allocator_is_nothrow::value,            (std::is_nothrow_move_constructible<                absl::InlinedVector<MoveCanThrow, 2>>::value));}TEST(InlinedVectorTest, EmplaceBack) {  absl::InlinedVector<std::pair<std::string, int>, 1> v;  auto& inlined_element = v.emplace_back("answer", 42);  EXPECT_EQ(&inlined_element, &v[0]);  EXPECT_EQ(inlined_element.first, "answer");  EXPECT_EQ(inlined_element.second, 42);  auto& allocated_element = v.emplace_back("taxicab", 1729);  EXPECT_EQ(&allocated_element, &v[1]);  EXPECT_EQ(allocated_element.first, "taxicab");  EXPECT_EQ(allocated_element.second, 1729);}TEST(InlinedVectorTest, ShrinkToFitGrowingVector) {  absl::InlinedVector<std::pair<std::string, int>, 1> v;  v.shrink_to_fit();  EXPECT_EQ(v.capacity(), 1);  v.emplace_back("answer", 42);  v.shrink_to_fit();  EXPECT_EQ(v.capacity(), 1);  v.emplace_back("taxicab", 1729);  EXPECT_GE(v.capacity(), 2);  v.shrink_to_fit();  EXPECT_EQ(v.capacity(), 2);  v.reserve(100);  EXPECT_GE(v.capacity(), 100);  v.shrink_to_fit();  EXPECT_EQ(v.capacity(), 2);}TEST(InlinedVectorTest, ShrinkToFitEdgeCases) {  {    absl::InlinedVector<std::pair<std::string, int>, 1> v;    v.emplace_back("answer", 42);    v.emplace_back("taxicab", 1729);    EXPECT_GE(v.capacity(), 2);    v.pop_back();    v.shrink_to_fit();    EXPECT_EQ(v.capacity(), 1);    EXPECT_EQ(v[0].first, "answer");    EXPECT_EQ(v[0].second, 42);  }  {    absl::InlinedVector<std::string, 2> v(100);    v.resize(0);    v.shrink_to_fit();    EXPECT_EQ(v.capacity(), 2);  // inlined capacity  }  {    absl::InlinedVector<std::string, 2> v(100);    v.resize(1);    v.shrink_to_fit();    EXPECT_EQ(v.capacity(), 2);  // inlined capacity  }  {    absl::InlinedVector<std::string, 2> v(100);    v.resize(2);    v.shrink_to_fit();    EXPECT_EQ(v.capacity(), 2);  }  {    absl::InlinedVector<std::string, 2> v(100);    v.resize(3);    v.shrink_to_fit();    EXPECT_EQ(v.capacity(), 3);  }}TEST(IntVec, Insert) {  for (int len = 0; len < 20; len++) {    for (int pos = 0; pos <= len; pos++) {      {        // Single element        std::vector<int> std_v;        Fill(&std_v, len);        IntVec v;        Fill(&v, len);        std_v.insert(std_v.begin() + pos, 9999);        IntVec::iterator it = v.insert(v.cbegin() + pos, 9999);        EXPECT_THAT(v, ElementsAreArray(std_v));        EXPECT_EQ(it, v.cbegin() + pos);      }      {        // n elements        std::vector<int> std_v;        Fill(&std_v, len);        IntVec v;        Fill(&v, len);        IntVec::size_type n = 5;        std_v.insert(std_v.begin() + pos, n, 9999);        IntVec::iterator it = v.insert(v.cbegin() + pos, n, 9999);        EXPECT_THAT(v, ElementsAreArray(std_v));        EXPECT_EQ(it, v.cbegin() + pos);      }      {        // Iterator range (random access iterator)        std::vector<int> std_v;        Fill(&std_v, len);        IntVec v;        Fill(&v, len);        const std::vector<int> input = {9999, 8888, 7777};        std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend());        IntVec::iterator it =            v.insert(v.cbegin() + pos, input.cbegin(), input.cend());        EXPECT_THAT(v, ElementsAreArray(std_v));        EXPECT_EQ(it, v.cbegin() + pos);      }      {        // Iterator range (forward iterator)        std::vector<int> std_v;        Fill(&std_v, len);        IntVec v;        Fill(&v, len);        const std::forward_list<int> input = {9999, 8888, 7777};        std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend());        IntVec::iterator it =            v.insert(v.cbegin() + pos, input.cbegin(), input.cend());        EXPECT_THAT(v, ElementsAreArray(std_v));        EXPECT_EQ(it, v.cbegin() + pos);      }      {        // Iterator range (input iterator)        std::vector<int> std_v;        Fill(&std_v, len);        IntVec v;        Fill(&v, len);        std_v.insert(std_v.begin() + pos, {9999, 8888, 7777});        std::istringstream input("9999 8888 7777");        IntVec::iterator it =            v.insert(v.cbegin() + pos, std::istream_iterator<int>(input),                     std::istream_iterator<int>());        EXPECT_THAT(v, ElementsAreArray(std_v));        EXPECT_EQ(it, v.cbegin() + pos);      }      {        // Initializer list        std::vector<int> std_v;        Fill(&std_v, len);        IntVec v;        Fill(&v, len);        std_v.insert(std_v.begin() + pos, {9999, 8888});        IntVec::iterator it = v.insert(v.cbegin() + pos, {9999, 8888});        EXPECT_THAT(v, ElementsAreArray(std_v));        EXPECT_EQ(it, v.cbegin() + pos);      }    }  }}TEST(RefCountedVec, InsertConstructorDestructor) {  // Make sure the proper construction/destruction happen during insert  // operations.  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    for (int pos = 0; pos <= len; pos++) {      SCOPED_TRACE(pos);      std::vector<int> counts(len, 0);      int inserted_count = 0;      RefCountedVec v;      for (int i = 0; i < len; ++i) {        SCOPED_TRACE(i);        v.push_back(RefCounted(i, &counts[i]));      }      EXPECT_THAT(counts, Each(Eq(1)));      RefCounted insert_element(9999, &inserted_count);      EXPECT_EQ(1, inserted_count);      v.insert(v.begin() + pos, insert_element);      EXPECT_EQ(2, inserted_count);      // Check that the elements at the end are preserved.      EXPECT_THAT(counts, Each(Eq(1)));      EXPECT_EQ(2, inserted_count);    }  }}TEST(IntVec, Resize) {  for (int len = 0; len < 20; len++) {    IntVec v;    Fill(&v, len);    // Try resizing up and down by k elements    static const int kResizeElem = 1000000;    for (int k = 0; k < 10; k++) {      // Enlarging resize      v.resize(len + k, kResizeElem);      EXPECT_EQ(len + k, v.size());      EXPECT_LE(len + k, v.capacity());      for (int i = 0; i < len + k; i++) {        if (i < len) {          EXPECT_EQ(i, v[i]);        } else {          EXPECT_EQ(kResizeElem, v[i]);        }      }      // Shrinking resize      v.resize(len, kResizeElem);      EXPECT_EQ(len, v.size());      EXPECT_LE(len, v.capacity());      for (int i = 0; i < len; i++) {        EXPECT_EQ(i, v[i]);      }    }  }}TEST(IntVec, InitWithLength) {  for (int len = 0; len < 20; len++) {    IntVec v(len, 7);    EXPECT_EQ(len, v.size());    EXPECT_LE(len, v.capacity());    for (int i = 0; i < len; i++) {      EXPECT_EQ(7, v[i]);    }  }}TEST(IntVec, CopyConstructorAndAssignment) {  for (int len = 0; len < 20; len++) {    IntVec v;    Fill(&v, len);    EXPECT_EQ(len, v.size());    EXPECT_LE(len, v.capacity());    IntVec v2(v);    EXPECT_TRUE(v == v2) << PrintToString(v) << PrintToString(v2);    for (int start_len = 0; start_len < 20; start_len++) {      IntVec v3;      Fill(&v3, start_len, 99);  // Add dummy elements that should go away      v3 = v;      EXPECT_TRUE(v == v3) << PrintToString(v) << PrintToString(v3);    }  }}TEST(IntVec, AliasingCopyAssignment) {  for (int len = 0; len < 20; ++len) {    IntVec original;    Fill(&original, len);    IntVec dup = original;    dup = *&dup;    EXPECT_EQ(dup, original);  }}TEST(IntVec, MoveConstructorAndAssignment) {  for (int len = 0; len < 20; len++) {    IntVec v_in;    const int inlined_capacity = v_in.capacity();    Fill(&v_in, len);    EXPECT_EQ(len, v_in.size());    EXPECT_LE(len, v_in.capacity());    {      IntVec v_temp(v_in);      auto* old_data = v_temp.data();      IntVec v_out(std::move(v_temp));      EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out);      if (v_in.size() > inlined_capacity) {        // Allocation is moved as a whole, data stays in place.        EXPECT_TRUE(v_out.data() == old_data);      } else {        EXPECT_FALSE(v_out.data() == old_data);      }    }    for (int start_len = 0; start_len < 20; start_len++) {      IntVec v_out;      Fill(&v_out, start_len, 99);  // Add dummy elements that should go away      IntVec v_temp(v_in);      auto* old_data = v_temp.data();      v_out = std::move(v_temp);      EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out);      if (v_in.size() > inlined_capacity) {        // Allocation is moved as a whole, data stays in place.        EXPECT_TRUE(v_out.data() == old_data);      } else {        EXPECT_FALSE(v_out.data() == old_data);      }    }  }}class NotTriviallyDestructible { public:  NotTriviallyDestructible() : p_(new int(1)) {}  explicit NotTriviallyDestructible(int i) : p_(new int(i)) {}  NotTriviallyDestructible(const NotTriviallyDestructible& other)      : p_(new int(*other.p_)) {}  NotTriviallyDestructible& operator=(const NotTriviallyDestructible& other) {    p_ = absl::make_unique<int>(*other.p_);    return *this;  }  bool operator==(const NotTriviallyDestructible& other) const {    return *p_ == *other.p_;  } private:  std::unique_ptr<int> p_;};TEST(AliasingTest, Emplace) {  for (int i = 2; i < 20; ++i) {    absl::InlinedVector<NotTriviallyDestructible, 10> vec;    for (int j = 0; j < i; ++j) {      vec.push_back(NotTriviallyDestructible(j));    }    vec.emplace(vec.begin(), vec[0]);    EXPECT_EQ(vec[0], vec[1]);    vec.emplace(vec.begin() + i / 2, vec[i / 2]);    EXPECT_EQ(vec[i / 2], vec[i / 2 + 1]);    vec.emplace(vec.end() - 1, vec.back());    EXPECT_EQ(vec[vec.size() - 2], vec.back());  }}TEST(AliasingTest, InsertWithCount) {  for (int i = 1; i < 20; ++i) {    absl::InlinedVector<NotTriviallyDestructible, 10> vec;    for (int j = 0; j < i; ++j) {      vec.push_back(NotTriviallyDestructible(j));    }    for (int n = 0; n < 5; ++n) {      // We use back where we can because it's guaranteed to become invalidated      vec.insert(vec.begin(), n, vec.back());      auto b = vec.begin();      EXPECT_TRUE(          std::all_of(b, b + n, [&vec](const NotTriviallyDestructible& x) {            return x == vec.back();          }));      auto m_idx = vec.size() / 2;      vec.insert(vec.begin() + m_idx, n, vec.back());      auto m = vec.begin() + m_idx;      EXPECT_TRUE(          std::all_of(m, m + n, [&vec](const NotTriviallyDestructible& x) {            return x == vec.back();          }));      // We want distinct values so the equality test is meaningful,      // vec[vec.size() - 1] is also almost always invalidated.      auto old_e = vec.size() - 1;      auto val = vec[old_e];      vec.insert(vec.end(), n, vec[old_e]);      auto e = vec.begin() + old_e;      EXPECT_TRUE(std::all_of(          e, e + n,          [&val](const NotTriviallyDestructible& x) { return x == val; }));    }  }}TEST(OverheadTest, Storage) {  // Check for size overhead.  // In particular, ensure that std::allocator doesn't cost anything to store.  // The union should be absorbing some of the allocation bookkeeping overhead  // in the larger vectors, leaving only the size_ field as overhead.  struct T { void* val; };  size_t expected_overhead = sizeof(T);  EXPECT_EQ((2 * expected_overhead),            sizeof(absl::InlinedVector<T, 1>) - sizeof(T[1]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 2>) - sizeof(T[2]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 3>) - sizeof(T[3]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 4>) - sizeof(T[4]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 5>) - sizeof(T[5]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 6>) - sizeof(T[6]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 7>) - sizeof(T[7]));  EXPECT_EQ(expected_overhead,            sizeof(absl::InlinedVector<T, 8>) - sizeof(T[8]));}TEST(IntVec, Clear) {  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    IntVec v;    Fill(&v, len);    v.clear();    EXPECT_EQ(0, v.size());    EXPECT_EQ(v.begin(), v.end());  }}TEST(IntVec, Reserve) {  for (int len = 0; len < 20; len++) {    IntVec v;    Fill(&v, len);    for (int newlen = 0; newlen < 100; newlen++) {      const int* start_rep = v.data();      v.reserve(newlen);      const int* final_rep = v.data();      if (newlen <= len) {        EXPECT_EQ(start_rep, final_rep);      }      EXPECT_LE(newlen, v.capacity());      // Filling up to newlen should not change rep      while (v.size() < newlen) {        v.push_back(0);      }      EXPECT_EQ(final_rep, v.data());    }  }}TEST(StringVec, SelfRefPushBack) {  std::vector<std::string> std_v;  absl::InlinedVector<std::string, 4> v;  const std::string s = "A quite long string to ensure heap.";  std_v.push_back(s);  v.push_back(s);  for (int i = 0; i < 20; ++i) {    EXPECT_THAT(v, ElementsAreArray(std_v));    v.push_back(v.back());    std_v.push_back(std_v.back());  }  EXPECT_THAT(v, ElementsAreArray(std_v));}TEST(StringVec, SelfRefPushBackWithMove) {  std::vector<std::string> std_v;  absl::InlinedVector<std::string, 4> v;  const std::string s = "A quite long string to ensure heap.";  std_v.push_back(s);  v.push_back(s);  for (int i = 0; i < 20; ++i) {    EXPECT_EQ(v.back(), std_v.back());    v.push_back(std::move(v.back()));    std_v.push_back(std::move(std_v.back()));  }  EXPECT_EQ(v.back(), std_v.back());}TEST(StringVec, SelfMove) {  const std::string s = "A quite long string to ensure heap.";  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    absl::InlinedVector<std::string, 8> v;    for (int i = 0; i < len; ++i) {      SCOPED_TRACE(i);      v.push_back(s);    }    // Indirection necessary to avoid compiler warning.    v = std::move(*(&v));    // Ensure that the inlined vector is still in a valid state by copying it.    // We don't expect specific contents since a self-move results in an    // unspecified valid state.    std::vector<std::string> copy(v.begin(), v.end());  }}TEST(IntVec, Swap) {  for (int l1 = 0; l1 < 20; l1++) {    SCOPED_TRACE(l1);    for (int l2 = 0; l2 < 20; l2++) {      SCOPED_TRACE(l2);      IntVec a = Fill(l1, 0);      IntVec b = Fill(l2, 100);      {        using std::swap;        swap(a, b);      }      EXPECT_EQ(l1, b.size());      EXPECT_EQ(l2, a.size());      for (int i = 0; i < l1; i++) {        SCOPED_TRACE(i);        EXPECT_EQ(i, b[i]);      }      for (int i = 0; i < l2; i++) {        SCOPED_TRACE(i);        EXPECT_EQ(100 + i, a[i]);      }    }  }}TYPED_TEST_P(InstanceTest, Swap) {  using Instance = TypeParam;  using InstanceVec = absl::InlinedVector<Instance, 8>;  for (int l1 = 0; l1 < 20; l1++) {    SCOPED_TRACE(l1);    for (int l2 = 0; l2 < 20; l2++) {      SCOPED_TRACE(l2);      InstanceTracker tracker;      InstanceVec a, b;      const size_t inlined_capacity = a.capacity();      auto min_len = std::min(l1, l2);      auto max_len = std::max(l1, l2);      for (int i = 0; i < l1; i++) a.push_back(Instance(i));      for (int i = 0; i < l2; i++) b.push_back(Instance(100 + i));      EXPECT_EQ(tracker.instances(), l1 + l2);      tracker.ResetCopiesMovesSwaps();      {        using std::swap;        swap(a, b);      }      EXPECT_EQ(tracker.instances(), l1 + l2);      if (a.size() > inlined_capacity && b.size() > inlined_capacity) {        EXPECT_EQ(tracker.swaps(), 0);  // Allocations are swapped.        EXPECT_EQ(tracker.moves(), 0);      } else if (a.size() <= inlined_capacity && b.size() <= inlined_capacity) {        EXPECT_EQ(tracker.swaps(), min_len);        EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),                  max_len - min_len);      } else {        // One is allocated and the other isn't. The allocation is transferred        // without copying elements, and the inlined instances are copied/moved.        EXPECT_EQ(tracker.swaps(), 0);        EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),                  min_len);      }      EXPECT_EQ(l1, b.size());      EXPECT_EQ(l2, a.size());      for (int i = 0; i < l1; i++) {        EXPECT_EQ(i, b[i].value());      }      for (int i = 0; i < l2; i++) {        EXPECT_EQ(100 + i, a[i].value());      }    }  }}TEST(IntVec, EqualAndNotEqual) {  IntVec a, b;  EXPECT_TRUE(a == b);  EXPECT_FALSE(a != b);  a.push_back(3);  EXPECT_FALSE(a == b);  EXPECT_TRUE(a != b);  b.push_back(3);  EXPECT_TRUE(a == b);  EXPECT_FALSE(a != b);  b.push_back(7);  EXPECT_FALSE(a == b);  EXPECT_TRUE(a != b);  a.push_back(6);  EXPECT_FALSE(a == b);  EXPECT_TRUE(a != b);  a.clear();  b.clear();  for (int i = 0; i < 100; i++) {    a.push_back(i);    b.push_back(i);    EXPECT_TRUE(a == b);    EXPECT_FALSE(a != b);    b[i] = b[i] + 1;    EXPECT_FALSE(a == b);    EXPECT_TRUE(a != b);    b[i] = b[i] - 1;  // Back to before    EXPECT_TRUE(a == b);    EXPECT_FALSE(a != b);  }}TEST(IntVec, RelationalOps) {  IntVec a, b;  EXPECT_FALSE(a < b);  EXPECT_FALSE(b < a);  EXPECT_FALSE(a > b);  EXPECT_FALSE(b > a);  EXPECT_TRUE(a <= b);  EXPECT_TRUE(b <= a);  EXPECT_TRUE(a >= b);  EXPECT_TRUE(b >= a);  b.push_back(3);  EXPECT_TRUE(a < b);  EXPECT_FALSE(b < a);  EXPECT_FALSE(a > b);  EXPECT_TRUE(b > a);  EXPECT_TRUE(a <= b);  EXPECT_FALSE(b <= a);  EXPECT_FALSE(a >= b);  EXPECT_TRUE(b >= a);}TYPED_TEST_P(InstanceTest, CountConstructorsDestructors) {  using Instance = TypeParam;  using InstanceVec = absl::InlinedVector<Instance, 8>;  InstanceTracker tracker;  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    tracker.ResetCopiesMovesSwaps();    InstanceVec v;    const size_t inlined_capacity = v.capacity();    for (int i = 0; i < len; i++) {      v.push_back(Instance(i));    }    EXPECT_EQ(tracker.instances(), len);    EXPECT_GE(tracker.copies() + tracker.moves(),              len);  // More due to reallocation.    tracker.ResetCopiesMovesSwaps();    // Enlarging resize() must construct some objects    tracker.ResetCopiesMovesSwaps();    v.resize(len + 10, Instance(100));    EXPECT_EQ(tracker.instances(), len + 10);    if (len <= inlined_capacity && len + 10 > inlined_capacity) {      EXPECT_EQ(tracker.copies() + tracker.moves(), 10 + len);    } else {      // Only specify a minimum number of copies + moves. We don't want to      // depend on the reallocation policy here.      EXPECT_GE(tracker.copies() + tracker.moves(),                10);  // More due to reallocation.    }    // Shrinking resize() must destroy some objects    tracker.ResetCopiesMovesSwaps();    v.resize(len, Instance(100));    EXPECT_EQ(tracker.instances(), len);    EXPECT_EQ(tracker.copies(), 0);    EXPECT_EQ(tracker.moves(), 0);    // reserve() must not increase the number of initialized objects    SCOPED_TRACE("reserve");    v.reserve(len + 1000);    EXPECT_EQ(tracker.instances(), len);    EXPECT_EQ(tracker.copies() + tracker.moves(), len);    // pop_back() and erase() must destroy one object    if (len > 0) {      tracker.ResetCopiesMovesSwaps();      v.pop_back();      EXPECT_EQ(tracker.instances(), len - 1);      EXPECT_EQ(tracker.copies(), 0);      EXPECT_EQ(tracker.moves(), 0);      if (!v.empty()) {        tracker.ResetCopiesMovesSwaps();        v.erase(v.begin());        EXPECT_EQ(tracker.instances(), len - 2);        EXPECT_EQ(tracker.copies() + tracker.moves(), len - 2);      }    }    tracker.ResetCopiesMovesSwaps();    int instances_before_empty_erase = tracker.instances();    v.erase(v.begin(), v.begin());    EXPECT_EQ(tracker.instances(), instances_before_empty_erase);    EXPECT_EQ(tracker.copies() + tracker.moves(), 0);  }}TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnCopyConstruction) {  using Instance = TypeParam;  using InstanceVec = absl::InlinedVector<Instance, 8>;  InstanceTracker tracker;  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    tracker.ResetCopiesMovesSwaps();    InstanceVec v;    for (int i = 0; i < len; i++) {      v.push_back(Instance(i));    }    EXPECT_EQ(tracker.instances(), len);    EXPECT_GE(tracker.copies() + tracker.moves(),              len);  // More due to reallocation.    tracker.ResetCopiesMovesSwaps();    {  // Copy constructor should create 'len' more instances.      InstanceVec v_copy(v);      EXPECT_EQ(tracker.instances(), len + len);      EXPECT_EQ(tracker.copies(), len);      EXPECT_EQ(tracker.moves(), 0);    }    EXPECT_EQ(tracker.instances(), len);  }}TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveConstruction) {  using Instance = TypeParam;  using InstanceVec = absl::InlinedVector<Instance, 8>;  InstanceTracker tracker;  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    tracker.ResetCopiesMovesSwaps();    InstanceVec v;    const size_t inlined_capacity = v.capacity();    for (int i = 0; i < len; i++) {      v.push_back(Instance(i));    }    EXPECT_EQ(tracker.instances(), len);    EXPECT_GE(tracker.copies() + tracker.moves(),              len);  // More due to reallocation.    tracker.ResetCopiesMovesSwaps();    {      InstanceVec v_copy(std::move(v));      if (len > inlined_capacity) {        // Allocation is moved as a whole.        EXPECT_EQ(tracker.instances(), len);        EXPECT_EQ(tracker.live_instances(), len);        // Tests an implementation detail, don't rely on this in your code.        EXPECT_EQ(v.size(), 0);  // NOLINT misc-use-after-move        EXPECT_EQ(tracker.copies(), 0);        EXPECT_EQ(tracker.moves(), 0);      } else {        EXPECT_EQ(tracker.instances(), len + len);        if (Instance::supports_move()) {          EXPECT_EQ(tracker.live_instances(), len);          EXPECT_EQ(tracker.copies(), 0);          EXPECT_EQ(tracker.moves(), len);        } else {          EXPECT_EQ(tracker.live_instances(), len + len);          EXPECT_EQ(tracker.copies(), len);          EXPECT_EQ(tracker.moves(), 0);        }      }      EXPECT_EQ(tracker.swaps(), 0);    }  }}TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnAssignment) {  using Instance = TypeParam;  using InstanceVec = absl::InlinedVector<Instance, 8>;  InstanceTracker tracker;  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    for (int longorshort = 0; longorshort <= 1; ++longorshort) {      SCOPED_TRACE(longorshort);      tracker.ResetCopiesMovesSwaps();      InstanceVec longer, shorter;      for (int i = 0; i < len; i++) {        longer.push_back(Instance(i));        shorter.push_back(Instance(i));      }      longer.push_back(Instance(len));      EXPECT_EQ(tracker.instances(), len + len + 1);      EXPECT_GE(tracker.copies() + tracker.moves(),                len + len + 1);  // More due to reallocation.      tracker.ResetCopiesMovesSwaps();      if (longorshort) {        shorter = longer;        EXPECT_EQ(tracker.instances(), (len + 1) + (len + 1));        EXPECT_GE(tracker.copies() + tracker.moves(),                  len + 1);  // More due to reallocation.      } else {        longer = shorter;        EXPECT_EQ(tracker.instances(), len + len);        EXPECT_EQ(tracker.copies() + tracker.moves(), len);      }    }  }}TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveAssignment) {  using Instance = TypeParam;  using InstanceVec = absl::InlinedVector<Instance, 8>;  InstanceTracker tracker;  for (int len = 0; len < 20; len++) {    SCOPED_TRACE(len);    for (int longorshort = 0; longorshort <= 1; ++longorshort) {      SCOPED_TRACE(longorshort);      tracker.ResetCopiesMovesSwaps();      InstanceVec longer, shorter;      const int inlined_capacity = longer.capacity();      for (int i = 0; i < len; i++) {        longer.push_back(Instance(i));        shorter.push_back(Instance(i));      }      longer.push_back(Instance(len));      EXPECT_EQ(tracker.instances(), len + len + 1);      EXPECT_GE(tracker.copies() + tracker.moves(),                len + len + 1);  // More due to reallocation.      tracker.ResetCopiesMovesSwaps();      int src_len;      if (longorshort) {        src_len = len + 1;        shorter = std::move(longer);      } else {        src_len = len;        longer = std::move(shorter);      }      if (src_len > inlined_capacity) {        // Allocation moved as a whole.        EXPECT_EQ(tracker.instances(), src_len);        EXPECT_EQ(tracker.live_instances(), src_len);        EXPECT_EQ(tracker.copies(), 0);        EXPECT_EQ(tracker.moves(), 0);      } else {        // Elements are all copied.        EXPECT_EQ(tracker.instances(), src_len + src_len);        if (Instance::supports_move()) {          EXPECT_EQ(tracker.copies(), 0);          EXPECT_EQ(tracker.moves(), src_len);          EXPECT_EQ(tracker.live_instances(), src_len);        } else {          EXPECT_EQ(tracker.copies(), src_len);          EXPECT_EQ(tracker.moves(), 0);          EXPECT_EQ(tracker.live_instances(), src_len + src_len);        }      }      EXPECT_EQ(tracker.swaps(), 0);    }  }}TEST(CountElemAssign, SimpleTypeWithInlineBacking) {  for (size_t original_size = 0; original_size <= 5; ++original_size) {    SCOPED_TRACE(original_size);    // Original contents are [12345, 12345, ...]    std::vector<int> original_contents(original_size, 12345);    absl::InlinedVector<int, 2> v(original_contents.begin(),                                  original_contents.end());    v.assign(2, 123);    EXPECT_THAT(v, AllOf(SizeIs(2), ElementsAre(123, 123)));    if (original_size <= 2) {      // If the original had inline backing, it should stay inline.      EXPECT_EQ(2, v.capacity());    }  }}TEST(CountElemAssign, SimpleTypeWithAllocation) {  for (size_t original_size = 0; original_size <= 5; ++original_size) {    SCOPED_TRACE(original_size);    // Original contents are [12345, 12345, ...]    std::vector<int> original_contents(original_size, 12345);    absl::InlinedVector<int, 2> v(original_contents.begin(),                                  original_contents.end());    v.assign(3, 123);    EXPECT_THAT(v, AllOf(SizeIs(3), ElementsAre(123, 123, 123)));    EXPECT_LE(v.size(), v.capacity());  }}TYPED_TEST_P(InstanceTest, CountElemAssignInlineBacking) {  using Instance = TypeParam;  for (size_t original_size = 0; original_size <= 5; ++original_size) {    SCOPED_TRACE(original_size);    // Original contents are [12345, 12345, ...]    std::vector<Instance> original_contents(original_size, Instance(12345));    absl::InlinedVector<Instance, 2> v(original_contents.begin(),                                       original_contents.end());    v.assign(2, Instance(123));    EXPECT_THAT(v, AllOf(SizeIs(2), ElementsAre(ValueIs(123), ValueIs(123))));    if (original_size <= 2) {      // If the original had inline backing, it should stay inline.      EXPECT_EQ(2, v.capacity());    }  }}template <typename Instance>void InstanceCountElemAssignWithAllocationTest() {  for (size_t original_size = 0; original_size <= 5; ++original_size) {    SCOPED_TRACE(original_size);    // Original contents are [12345, 12345, ...]    std::vector<Instance> original_contents(original_size, Instance(12345));    absl::InlinedVector<Instance, 2> v(original_contents.begin(),                                       original_contents.end());    v.assign(3, Instance(123));    EXPECT_THAT(v, AllOf(SizeIs(3), ElementsAre(ValueIs(123), ValueIs(123),                                                ValueIs(123))));    EXPECT_LE(v.size(), v.capacity());  }}TEST(CountElemAssign, WithAllocationCopyableInstance) {  InstanceCountElemAssignWithAllocationTest<CopyableOnlyInstance>();}TEST(CountElemAssign, WithAllocationCopyableMovableInstance) {  InstanceCountElemAssignWithAllocationTest<CopyableMovableInstance>();}TEST(RangedConstructor, SimpleType) {  std::vector<int> source_v = {4, 5, 6};  // First try to fit in inline backing  absl::InlinedVector<int, 4> v(source_v.begin(), source_v.end());  EXPECT_EQ(3, v.size());  EXPECT_EQ(4, v.capacity());  // Indication that we're still on inlined storage  EXPECT_EQ(4, v[0]);  EXPECT_EQ(5, v[1]);  EXPECT_EQ(6, v[2]);  // Now, force a re-allocate  absl::InlinedVector<int, 2> realloc_v(source_v.begin(), source_v.end());  EXPECT_EQ(3, realloc_v.size());  EXPECT_LT(2, realloc_v.capacity());  EXPECT_EQ(4, realloc_v[0]);  EXPECT_EQ(5, realloc_v[1]);  EXPECT_EQ(6, realloc_v[2]);}// Test for ranged constructors using Instance as the element type and// SourceContainer as the source container type.template <typename Instance, typename SourceContainer, int inlined_capacity>void InstanceRangedConstructorTestForContainer() {  InstanceTracker tracker;  SourceContainer source_v = {Instance(0), Instance(1)};  tracker.ResetCopiesMovesSwaps();  absl::InlinedVector<Instance, inlined_capacity> v(source_v.begin(),                                                    source_v.end());  EXPECT_EQ(2, v.size());  EXPECT_LT(1, v.capacity());  EXPECT_EQ(0, v[0].value());  EXPECT_EQ(1, v[1].value());  EXPECT_EQ(tracker.copies(), 2);  EXPECT_EQ(tracker.moves(), 0);}template <typename Instance, int inlined_capacity>void InstanceRangedConstructorTestWithCapacity() {  // Test with const and non-const, random access and non-random-access sources.  // TODO(bsamwel): Test with an input iterator source.  {    SCOPED_TRACE("std::list");    InstanceRangedConstructorTestForContainer<Instance, std::list<Instance>,                                              inlined_capacity>();    {      SCOPED_TRACE("const std::list");      InstanceRangedConstructorTestForContainer<          Instance, const std::list<Instance>, inlined_capacity>();    }    {      SCOPED_TRACE("std::vector");      InstanceRangedConstructorTestForContainer<Instance, std::vector<Instance>,                                                inlined_capacity>();    }    {      SCOPED_TRACE("const std::vector");      InstanceRangedConstructorTestForContainer<          Instance, const std::vector<Instance>, inlined_capacity>();    }  }}TYPED_TEST_P(InstanceTest, RangedConstructor) {  using Instance = TypeParam;  SCOPED_TRACE("capacity=1");  InstanceRangedConstructorTestWithCapacity<Instance, 1>();  SCOPED_TRACE("capacity=2");  InstanceRangedConstructorTestWithCapacity<Instance, 2>();}TEST(RangedConstructor, ElementsAreConstructed) {  std::vector<std::string> source_v = {"cat", "dog"};  // Force expansion and re-allocation of v.  Ensures that when the vector is  // expanded that new elements are constructed.  absl::InlinedVector<std::string, 1> v(source_v.begin(), source_v.end());  EXPECT_EQ("cat", v[0]);  EXPECT_EQ("dog", v[1]);}TEST(RangedAssign, SimpleType) {  // Test for all combinations of original sizes (empty and non-empty inline,  // and out of line) and target sizes.  for (size_t original_size = 0; original_size <= 5; ++original_size) {    SCOPED_TRACE(original_size);    // Original contents are [12345, 12345, ...]    std::vector<int> original_contents(original_size, 12345);    for (size_t target_size = 0; target_size <= 5; ++target_size) {      SCOPED_TRACE(target_size);      // New contents are [3, 4, ...]      std::vector<int> new_contents;      for (size_t i = 0; i < target_size; ++i) {        new_contents.push_back(i + 3);      }      absl::InlinedVector<int, 3> v(original_contents.begin(),                                    original_contents.end());      v.assign(new_contents.begin(), new_contents.end());      EXPECT_EQ(new_contents.size(), v.size());      EXPECT_LE(new_contents.size(), v.capacity());      if (target_size <= 3 && original_size <= 3) {        // Storage should stay inline when target size is small.        EXPECT_EQ(3, v.capacity());      }      EXPECT_THAT(v, ElementsAreArray(new_contents));    }  }}// Returns true if lhs and rhs have the same value.template <typename Instance>static bool InstanceValuesEqual(const Instance& lhs, const Instance& rhs) {  return lhs.value() == rhs.value();}// Test for ranged assign() using Instance as the element type and// SourceContainer as the source container type.template <typename Instance, typename SourceContainer>void InstanceRangedAssignTestForContainer() {  // Test for all combinations of original sizes (empty and non-empty inline,  // and out of line) and target sizes.  for (size_t original_size = 0; original_size <= 5; ++original_size) {    SCOPED_TRACE(original_size);    // Original contents are [12345, 12345, ...]    std::vector<Instance> original_contents(original_size, Instance(12345));    for (size_t target_size = 0; target_size <= 5; ++target_size) {      SCOPED_TRACE(target_size);      // New contents are [3, 4, ...]      // Generate data using a non-const container, because SourceContainer      // itself may be const.      // TODO(bsamwel): Test with an input iterator.      std::vector<Instance> new_contents_in;      for (size_t i = 0; i < target_size; ++i) {        new_contents_in.push_back(Instance(i + 3));      }      SourceContainer new_contents(new_contents_in.begin(),                                   new_contents_in.end());      absl::InlinedVector<Instance, 3> v(original_contents.begin(),                                         original_contents.end());      v.assign(new_contents.begin(), new_contents.end());      EXPECT_EQ(new_contents.size(), v.size());      EXPECT_LE(new_contents.size(), v.capacity());      if (target_size <= 3 && original_size <= 3) {        // Storage should stay inline when target size is small.        EXPECT_EQ(3, v.capacity());      }      EXPECT_TRUE(std::equal(v.begin(), v.end(), new_contents.begin(),                             InstanceValuesEqual<Instance>));    }  }}TYPED_TEST_P(InstanceTest, RangedAssign) {  using Instance = TypeParam;  // Test with const and non-const, random access and non-random-access sources.  // TODO(bsamwel): Test with an input iterator source.  SCOPED_TRACE("std::list");  InstanceRangedAssignTestForContainer<Instance, std::list<Instance>>();  SCOPED_TRACE("const std::list");  InstanceRangedAssignTestForContainer<Instance, const std::list<Instance>>();  SCOPED_TRACE("std::vector");  InstanceRangedAssignTestForContainer<Instance, std::vector<Instance>>();  SCOPED_TRACE("const std::vector");  InstanceRangedAssignTestForContainer<Instance, const std::vector<Instance>>();}TEST(InitializerListConstructor, SimpleTypeWithInlineBacking) {  EXPECT_THAT((absl::InlinedVector<int, 4>{4, 5, 6}),              AllOf(SizeIs(3), CapacityIs(4), ElementsAre(4, 5, 6)));}TEST(InitializerListConstructor, SimpleTypeWithReallocationRequired) {  EXPECT_THAT((absl::InlinedVector<int, 2>{4, 5, 6}),              AllOf(SizeIs(3), CapacityIs(Gt(2)), ElementsAre(4, 5, 6)));}TEST(InitializerListConstructor, DisparateTypesInList) {  EXPECT_THAT((absl::InlinedVector<int, 2>{-7, 8ULL}), ElementsAre(-7, 8));  EXPECT_THAT((absl::InlinedVector<std::string, 2>{"foo", std::string("bar")}),              ElementsAre("foo", "bar"));}TEST(InitializerListConstructor, ComplexTypeWithInlineBacking) {  EXPECT_THAT((absl::InlinedVector<CopyableMovableInstance, 1>{                  CopyableMovableInstance(0)}),              AllOf(SizeIs(1), CapacityIs(1), ElementsAre(ValueIs(0))));}TEST(InitializerListConstructor, ComplexTypeWithReallocationRequired) {  EXPECT_THAT(      (absl::InlinedVector<CopyableMovableInstance, 1>{          CopyableMovableInstance(0), CopyableMovableInstance(1)}),      AllOf(SizeIs(2), CapacityIs(Gt(1)), ElementsAre(ValueIs(0), ValueIs(1))));}TEST(InitializerListAssign, SimpleTypeFitsInlineBacking) {  for (size_t original_size = 0; original_size <= 4; ++original_size) {    SCOPED_TRACE(original_size);    absl::InlinedVector<int, 2> v1(original_size, 12345);    const size_t original_capacity_v1 = v1.capacity();    v1.assign({3});    EXPECT_THAT(        v1, AllOf(SizeIs(1), CapacityIs(original_capacity_v1), ElementsAre(3)));    absl::InlinedVector<int, 2> v2(original_size, 12345);    const size_t original_capacity_v2 = v2.capacity();    v2 = {3};    EXPECT_THAT(        v2, AllOf(SizeIs(1), CapacityIs(original_capacity_v2), ElementsAre(3)));  }}TEST(InitializerListAssign, SimpleTypeDoesNotFitInlineBacking) {  for (size_t original_size = 0; original_size <= 4; ++original_size) {    SCOPED_TRACE(original_size);    absl::InlinedVector<int, 2> v1(original_size, 12345);    v1.assign({3, 4, 5});    EXPECT_THAT(v1, AllOf(SizeIs(3), ElementsAre(3, 4, 5)));    EXPECT_LE(3, v1.capacity());    absl::InlinedVector<int, 2> v2(original_size, 12345);    v2 = {3, 4, 5};    EXPECT_THAT(v2, AllOf(SizeIs(3), ElementsAre(3, 4, 5)));    EXPECT_LE(3, v2.capacity());  }}TEST(InitializerListAssign, DisparateTypesInList) {  absl::InlinedVector<int, 2> v_int1;  v_int1.assign({-7, 8ULL});  EXPECT_THAT(v_int1, ElementsAre(-7, 8));  absl::InlinedVector<int, 2> v_int2;  v_int2 = {-7, 8ULL};  EXPECT_THAT(v_int2, ElementsAre(-7, 8));  absl::InlinedVector<std::string, 2> v_string1;  v_string1.assign({"foo", std::string("bar")});  EXPECT_THAT(v_string1, ElementsAre("foo", "bar"));  absl::InlinedVector<std::string, 2> v_string2;  v_string2 = {"foo", std::string("bar")};  EXPECT_THAT(v_string2, ElementsAre("foo", "bar"));}TYPED_TEST_P(InstanceTest, InitializerListAssign) {  using Instance = TypeParam;  for (size_t original_size = 0; original_size <= 4; ++original_size) {    SCOPED_TRACE(original_size);    absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));    const size_t original_capacity = v.capacity();    v.assign({Instance(3)});    EXPECT_THAT(v, AllOf(SizeIs(1), CapacityIs(original_capacity),                         ElementsAre(ValueIs(3))));  }  for (size_t original_size = 0; original_size <= 4; ++original_size) {    SCOPED_TRACE(original_size);    absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));    v.assign({Instance(3), Instance(4), Instance(5)});    EXPECT_THAT(        v, AllOf(SizeIs(3), ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5))));    EXPECT_LE(3, v.capacity());  }}REGISTER_TYPED_TEST_CASE_P(InstanceTest, Swap, CountConstructorsDestructors,                           CountConstructorsDestructorsOnCopyConstruction,                           CountConstructorsDestructorsOnMoveConstruction,                           CountConstructorsDestructorsOnAssignment,                           CountConstructorsDestructorsOnMoveAssignment,                           CountElemAssignInlineBacking, RangedConstructor,                           RangedAssign, InitializerListAssign);using InstanceTypes =    ::testing::Types<CopyableOnlyInstance, CopyableMovableInstance>;INSTANTIATE_TYPED_TEST_CASE_P(InstanceTestOnTypes, InstanceTest, InstanceTypes);TEST(DynamicVec, DynamicVecCompiles) {  DynamicVec v;  (void)v;}TEST(AllocatorSupportTest, Constructors) {  using MyAlloc = CountingAllocator<int>;  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;  const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};  int64_t allocated = 0;  MyAlloc alloc(&allocated);  { AllocVec ABSL_ATTRIBUTE_UNUSED v; }  { AllocVec ABSL_ATTRIBUTE_UNUSED v(alloc); }  { AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); }  { AllocVec ABSL_ATTRIBUTE_UNUSED v({1, 2, 3}, alloc); }  AllocVec v2;  { AllocVec ABSL_ATTRIBUTE_UNUSED v(v2, alloc); }  { AllocVec ABSL_ATTRIBUTE_UNUSED v(std::move(v2), alloc); }}TEST(AllocatorSupportTest, CountAllocations) {  using MyAlloc = CountingAllocator<int>;  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;  const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};  int64_t allocated = 0;  MyAlloc alloc(&allocated);  {    AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + 4, alloc);    EXPECT_THAT(allocated, 0);  }  EXPECT_THAT(allocated, 0);  {    AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc);    EXPECT_THAT(allocated, v.size() * sizeof(int));  }  EXPECT_THAT(allocated, 0);  {    AllocVec v(4, 1, alloc);    EXPECT_THAT(allocated, 0);    int64_t allocated2 = 0;    MyAlloc alloc2(&allocated2);    AllocVec v2(v, alloc2);    EXPECT_THAT(allocated2, 0);    int64_t allocated3 = 0;    MyAlloc alloc3(&allocated3);    AllocVec v3(std::move(v), alloc3);    EXPECT_THAT(allocated3, 0);  }  EXPECT_THAT(allocated, 0);  {    AllocVec v(8, 2, alloc);    EXPECT_THAT(allocated, v.size() * sizeof(int));    int64_t allocated2 = 0;    MyAlloc alloc2(&allocated2);    AllocVec v2(v, alloc2);    EXPECT_THAT(allocated2, v2.size() * sizeof(int));    int64_t allocated3 = 0;    MyAlloc alloc3(&allocated3);    AllocVec v3(std::move(v), alloc3);    EXPECT_THAT(allocated3, v3.size() * sizeof(int));  }  EXPECT_EQ(allocated, 0);  {    // Test shrink_to_fit deallocations.    AllocVec v(8, 2, alloc);    EXPECT_EQ(allocated, 8 * sizeof(int));    v.resize(5);    EXPECT_EQ(allocated, 8 * sizeof(int));    v.shrink_to_fit();    EXPECT_EQ(allocated, 5 * sizeof(int));    v.resize(4);    EXPECT_EQ(allocated, 5 * sizeof(int));    v.shrink_to_fit();    EXPECT_EQ(allocated, 0);  }}TEST(AllocatorSupportTest, SwapBothAllocated) {  using MyAlloc = CountingAllocator<int>;  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;  int64_t allocated1 = 0;  int64_t allocated2 = 0;  {    const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7};    const int ia2[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};    MyAlloc a1(&allocated1);    MyAlloc a2(&allocated2);    AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);    AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2);    EXPECT_LT(v1.capacity(), v2.capacity());    EXPECT_THAT(allocated1, v1.capacity() * sizeof(int));    EXPECT_THAT(allocated2, v2.capacity() * sizeof(int));    v1.swap(v2);    EXPECT_THAT(v1, ElementsAreArray(ia2));    EXPECT_THAT(v2, ElementsAreArray(ia1));    EXPECT_THAT(allocated1, v2.capacity() * sizeof(int));    EXPECT_THAT(allocated2, v1.capacity() * sizeof(int));  }  EXPECT_THAT(allocated1, 0);  EXPECT_THAT(allocated2, 0);}TEST(AllocatorSupportTest, SwapOneAllocated) {  using MyAlloc = CountingAllocator<int>;  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;  int64_t allocated1 = 0;  int64_t allocated2 = 0;  {    const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7};    const int ia2[] = {0, 1, 2, 3};    MyAlloc a1(&allocated1);    MyAlloc a2(&allocated2);    AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);    AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2);    EXPECT_THAT(allocated1, v1.capacity() * sizeof(int));    EXPECT_THAT(allocated2, 0);    v1.swap(v2);    EXPECT_THAT(v1, ElementsAreArray(ia2));    EXPECT_THAT(v2, ElementsAreArray(ia1));    EXPECT_THAT(allocated1, v2.capacity() * sizeof(int));    EXPECT_THAT(allocated2, 0);    EXPECT_TRUE(v2.get_allocator() == a1);    EXPECT_TRUE(v1.get_allocator() == a2);  }  EXPECT_THAT(allocated1, 0);  EXPECT_THAT(allocated2, 0);}TEST(AllocatorSupportTest, ScopedAllocatorWorksInlined) {  using StdVector = std::vector<int, CountingAllocator<int>>;  using Alloc = CountingAllocator<StdVector>;  using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>;  using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>;  int64_t total_allocated_byte_count = 0;  AllocVec inlined_case(ScopedAlloc(Alloc(+&total_allocated_byte_count)));  // Called only once to remain inlined  inlined_case.emplace_back();  int64_t absl_responsible_for_count = total_allocated_byte_count;  // MSVC's allocator preemptively allocates in debug mode#if !defined(_MSC_VER)  EXPECT_EQ(absl_responsible_for_count, 0);#endif  // !defined(_MSC_VER)  inlined_case[0].emplace_back();  EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count);  inlined_case.clear();  inlined_case.shrink_to_fit();  EXPECT_EQ(total_allocated_byte_count, 0);}TEST(AllocatorSupportTest, ScopedAllocatorWorksAllocated) {  using StdVector = std::vector<int, CountingAllocator<int>>;  using Alloc = CountingAllocator<StdVector>;  using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>;  using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>;  int64_t total_allocated_byte_count = 0;  AllocVec allocated_case(ScopedAlloc(Alloc(+&total_allocated_byte_count)));  // Called twice to force into being allocated  allocated_case.emplace_back();  allocated_case.emplace_back();  int64_t absl_responsible_for_count = total_allocated_byte_count;  EXPECT_GT(absl_responsible_for_count, 0);  allocated_case[1].emplace_back();  EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count);  allocated_case.clear();  allocated_case.shrink_to_fit();  EXPECT_EQ(total_allocated_byte_count, 0);}TEST(AllocatorSupportTest, SizeAllocConstructor) {  constexpr int inlined_size = 4;  using Alloc = CountingAllocator<int>;  using AllocVec = absl::InlinedVector<int, inlined_size, Alloc>;  {    auto len = inlined_size / 2;    int64_t allocated = 0;    auto v = AllocVec(len, Alloc(&allocated));    // Inline storage used; allocator should not be invoked    EXPECT_THAT(allocated, 0);    EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));  }  {    auto len = inlined_size * 2;    int64_t allocated = 0;    auto v = AllocVec(len, Alloc(&allocated));    // Out of line storage used; allocation of 8 elements expected    EXPECT_THAT(allocated, len * sizeof(int));    EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));  }}TEST(InlinedVectorTest, MinimumAllocatorCompilesUsingTraits) {  using T = int;  using A = std::allocator<T>;  using ATraits = absl::allocator_traits<A>;  struct MinimumAllocator {    using value_type = T;    value_type* allocate(size_t n) {      A a;      return ATraits::allocate(a, n);    }    void deallocate(value_type* p, size_t n) {      A a;      ATraits::deallocate(a, p, n);    }  };  absl::InlinedVector<T, 1, MinimumAllocator> vec;  vec.emplace_back();  vec.resize(0);}TEST(InlinedVectorTest, AbslHashValueWorks) {  using V = absl::InlinedVector<int, 4>;  std::vector<V> cases;  // Generate a variety of vectors some of these are small enough for the inline  // space but are stored out of line.  for (int i = 0; i < 10; ++i) {    V v;    for (int j = 0; j < i; ++j) {      v.push_back(j);    }    cases.push_back(v);    v.resize(i % 4);    cases.push_back(v);  }  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));}}  // anonymous namespace
 |