| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// This library provides Symbolize() function that symbolizes program// counters to their corresponding symbol names on linux platforms.// This library has a minimal implementation of an ELF symbol table// reader (i.e. it doesn't depend on libelf, etc.).//// The algorithm used in Symbolize() is as follows.////   1. Go through a list of maps in /proc/self/maps and find the map//   containing the program counter.////   2. Open the mapped file and find a regular symbol table inside.//   Iterate over symbols in the symbol table and look for the symbol//   containing the program counter.  If such a symbol is found,//   obtain the symbol name, and demangle the symbol if possible.//   If the symbol isn't found in the regular symbol table (binary is//   stripped), try the same thing with a dynamic symbol table.//// Note that Symbolize() is originally implemented to be used in// signal handlers, hence it doesn't use malloc() and other unsafe// operations.  It should be both thread-safe and async-signal-safe.//// Implementation note://// We don't use heaps but only use stacks.  We want to reduce the// stack consumption so that the symbolizer can run on small stacks.//// Here are some numbers collected with GCC 4.1.0 on x86:// - sizeof(Elf32_Sym)  = 16// - sizeof(Elf32_Shdr) = 40// - sizeof(Elf64_Sym)  = 24// - sizeof(Elf64_Shdr) = 64//// This implementation is intended to be async-signal-safe but uses some// functions which are not guaranteed to be so, such as memchr() and// memmove().  We assume they are async-signal-safe.#include <dlfcn.h>#include <elf.h>#include <fcntl.h>#include <link.h>  // For ElfW() macro.#include <sys/stat.h>#include <sys/types.h>#include <unistd.h>#include <algorithm>#include <atomic>#include <cerrno>#include <cinttypes>#include <climits>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include "absl/base/casts.h"#include "absl/base/dynamic_annotations.h"#include "absl/base/internal/low_level_alloc.h"#include "absl/base/internal/raw_logging.h"#include "absl/base/internal/spinlock.h"#include "absl/base/port.h"#include "absl/debugging/internal/demangle.h"#include "absl/debugging/internal/vdso_support.h"namespace absl {ABSL_NAMESPACE_BEGIN// Value of argv[0]. Used by MaybeInitializeObjFile().static char *argv0_value = nullptr;void InitializeSymbolizer(const char *argv0) {  if (argv0_value != nullptr) {    free(argv0_value);    argv0_value = nullptr;  }  if (argv0 != nullptr && argv0[0] != '\0') {    argv0_value = strdup(argv0);  }}namespace debugging_internal {namespace {// Re-runs fn until it doesn't cause EINTR.#define NO_INTR(fn) \  do {              \  } while ((fn) < 0 && errno == EINTR)// On Linux, ELF_ST_* are defined in <linux/elf.h>.  To make this portable// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.#ifndef ELF_ST_BIND#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)#endif#ifndef ELF_ST_TYPE#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)#endif// Some platforms use a special .opd section to store function pointers.const char kOpdSectionName[] = ".opd";#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)// Use opd section for function descriptors on these platforms, the function// address is the first word of the descriptor.enum { kPlatformUsesOPDSections = 1 };#else  // not PPC or IA64enum { kPlatformUsesOPDSections = 0 };#endif// This works for PowerPC & IA64 only.  A function descriptor consist of two// pointers and the first one is the function's entry.const size_t kFunctionDescriptorSize = sizeof(void *) * 2;const int kMaxDecorators = 10;  // Seems like a reasonable upper limit.struct InstalledSymbolDecorator {  SymbolDecorator fn;  void *arg;  int ticket;};int g_num_decorators;InstalledSymbolDecorator g_decorators[kMaxDecorators];struct FileMappingHint {  const void *start;  const void *end;  uint64_t offset;  const char *filename;};// Protects g_decorators.// We are using SpinLock and not a Mutex here, because we may be called// from inside Mutex::Lock itself, and it prohibits recursive calls.// This happens in e.g. base/stacktrace_syscall_unittest.// Moreover, we are using only TryLock(), if the decorator list// is being modified (is busy), we skip all decorators, and possibly// loose some info. Sorry, that's the best we could do.base_internal::SpinLock g_decorators_mu(base_internal::kLinkerInitialized);const int kMaxFileMappingHints = 8;int g_num_file_mapping_hints;FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];// Protects g_file_mapping_hints.base_internal::SpinLock g_file_mapping_mu(base_internal::kLinkerInitialized);// Async-signal-safe function to zero a buffer.// memset() is not guaranteed to be async-signal-safe.static void SafeMemZero(void* p, size_t size) {  unsigned char *c = static_cast<unsigned char *>(p);  while (size--) {    *c++ = 0;  }}struct ObjFile {  ObjFile()      : filename(nullptr),        start_addr(nullptr),        end_addr(nullptr),        offset(0),        fd(-1),        elf_type(-1) {    SafeMemZero(&elf_header, sizeof(elf_header));  }  char *filename;  const void *start_addr;  const void *end_addr;  uint64_t offset;  // The following fields are initialized on the first access to the  // object file.  int fd;  int elf_type;  ElfW(Ehdr) elf_header;};// Build 4-way associative cache for symbols. Within each cache line, symbols// are replaced in LRU order.enum {  ASSOCIATIVITY = 4,};struct SymbolCacheLine {  const void *pc[ASSOCIATIVITY];  char *name[ASSOCIATIVITY];  // age[i] is incremented when a line is accessed. it's reset to zero if the  // i'th entry is read.  uint32_t age[ASSOCIATIVITY];};// ---------------------------------------------------------------// An async-signal-safe arena for LowLevelAllocstatic std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;static base_internal::LowLevelAlloc::Arena *SigSafeArena() {  return g_sig_safe_arena.load(std::memory_order_acquire);}static void InitSigSafeArena() {  if (SigSafeArena() == nullptr) {    base_internal::LowLevelAlloc::Arena *new_arena =        base_internal::LowLevelAlloc::NewArena(            base_internal::LowLevelAlloc::kAsyncSignalSafe);    base_internal::LowLevelAlloc::Arena *old_value = nullptr;    if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,                                                  std::memory_order_release,                                                  std::memory_order_relaxed)) {      // We lost a race to allocate an arena; deallocate.      base_internal::LowLevelAlloc::DeleteArena(new_arena);    }  }}// ---------------------------------------------------------------// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.class AddrMap { public:  AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}  ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }  int Size() const { return size_; }  ObjFile *At(int i) { return &obj_[i]; }  ObjFile *Add();  void Clear(); private:  int size_;       // count of valid elements (<= allocated_)  int allocated_;  // count of allocated elements  ObjFile *obj_;   // array of allocated_ elements  AddrMap(const AddrMap &) = delete;  AddrMap &operator=(const AddrMap &) = delete;};void AddrMap::Clear() {  for (int i = 0; i != size_; i++) {    At(i)->~ObjFile();  }  size_ = 0;}ObjFile *AddrMap::Add() {  if (size_ == allocated_) {    int new_allocated = allocated_ * 2 + 50;    ObjFile *new_obj_ =        static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(            new_allocated * sizeof(*new_obj_), SigSafeArena()));    if (obj_) {      memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));      base_internal::LowLevelAlloc::Free(obj_);    }    obj_ = new_obj_;    allocated_ = new_allocated;  }  return new (&obj_[size_++]) ObjFile;}// ---------------------------------------------------------------enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };class Symbolizer { public:  Symbolizer();  ~Symbolizer();  const char *GetSymbol(const void *const pc); private:  char *CopyString(const char *s) {    int len = strlen(s);    char *dst = static_cast<char *>(        base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));    ABSL_RAW_CHECK(dst != nullptr, "out of memory");    memcpy(dst, s, len + 1);    return dst;  }  ObjFile *FindObjFile(const void *const start,                       size_t size) ABSL_ATTRIBUTE_NOINLINE;  static bool RegisterObjFile(const char *filename,                              const void *const start_addr,                              const void *const end_addr, uint64_t offset,                              void *arg);  SymbolCacheLine *GetCacheLine(const void *const pc);  const char *FindSymbolInCache(const void *const pc);  const char *InsertSymbolInCache(const void *const pc, const char *name);  void AgeSymbols(SymbolCacheLine *line);  void ClearAddrMap();  FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,                                           const void *const pc,                                           const ptrdiff_t relocation,                                           char *out, int out_size,                                           char *tmp_buf, int tmp_buf_size);  enum {    SYMBOL_BUF_SIZE = 3072,    TMP_BUF_SIZE = 1024,    SYMBOL_CACHE_LINES = 128,  };  AddrMap addr_map_;  bool ok_;  bool addr_map_read_;  char symbol_buf_[SYMBOL_BUF_SIZE];  // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)  // so we ensure that tmp_buf_ is properly aligned to store either.  alignas(16) char tmp_buf_[TMP_BUF_SIZE];  static_assert(alignof(ElfW(Shdr)) <= 16,                "alignment of tmp buf too small for Shdr");  static_assert(alignof(ElfW(Sym)) <= 16,                "alignment of tmp buf too small for Sym");  SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];};static std::atomic<Symbolizer *> g_cached_symbolizer;}  // namespacestatic int SymbolizerSize() {#if defined(__wasm__) || defined(__asmjs__)  int pagesize = getpagesize();#else  int pagesize = sysconf(_SC_PAGESIZE);#endif  return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;}// Return (and set null) g_cached_symbolized_state if it is not null.// Otherwise return a new symbolizer.static Symbolizer *AllocateSymbolizer() {  InitSigSafeArena();  Symbolizer *symbolizer =      g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);  if (symbolizer != nullptr) {    return symbolizer;  }  return new (base_internal::LowLevelAlloc::AllocWithArena(      SymbolizerSize(), SigSafeArena())) Symbolizer();}// Set g_cached_symbolize_state to s if it is null, otherwise// delete s.static void FreeSymbolizer(Symbolizer *s) {  Symbolizer *old_cached_symbolizer = nullptr;  if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,                                                   std::memory_order_release,                                                   std::memory_order_relaxed)) {    s->~Symbolizer();    base_internal::LowLevelAlloc::Free(s);  }}Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {  for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {    for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {      symbol_cache_line.pc[j] = nullptr;      symbol_cache_line.name[j] = nullptr;      symbol_cache_line.age[j] = 0;    }  }}Symbolizer::~Symbolizer() {  for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {    for (char *s : symbol_cache_line.name) {      base_internal::LowLevelAlloc::Free(s);    }  }  ClearAddrMap();}// We don't use assert() since it's not guaranteed to be// async-signal-safe.  Instead we define a minimal assertion// macro. So far, we don't need pretty printing for __FILE__, etc.#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())// Read up to "count" bytes from file descriptor "fd" into the buffer// starting at "buf" while handling short reads and EINTR.  On// success, return the number of bytes read.  Otherwise, return -1.static ssize_t ReadPersistent(int fd, void *buf, size_t count) {  SAFE_ASSERT(fd >= 0);  SAFE_ASSERT(count <= SSIZE_MAX);  char *buf0 = reinterpret_cast<char *>(buf);  size_t num_bytes = 0;  while (num_bytes < count) {    ssize_t len;    NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));    if (len < 0) {  // There was an error other than EINTR.      ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);      return -1;    }    if (len == 0) {  // Reached EOF.      break;    }    num_bytes += len;  }  SAFE_ASSERT(num_bytes <= count);  return static_cast<ssize_t>(num_bytes);}// Read up to "count" bytes from "offset" in the file pointed by file// descriptor "fd" into the buffer starting at "buf".  On success,// return the number of bytes read.  Otherwise, return -1.static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count,                              const off_t offset) {  off_t off = lseek(fd, offset, SEEK_SET);  if (off == (off_t)-1) {    ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd,                 static_cast<uintmax_t>(offset), errno);    return -1;  }  return ReadPersistent(fd, buf, count);}// Try reading exactly "count" bytes from "offset" bytes in a file// pointed by "fd" into the buffer starting at "buf" while handling// short reads and EINTR.  On success, return true. Otherwise, return// false.static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count,                                const off_t offset) {  ssize_t len = ReadFromOffset(fd, buf, count, offset);  return len >= 0 && static_cast<size_t>(len) == count;}// Returns elf_header.e_type if the file pointed by fd is an ELF binary.static int FileGetElfType(const int fd) {  ElfW(Ehdr) elf_header;  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {    return -1;  }  if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {    return -1;  }  return elf_header.e_type;}// Read the section headers in the given ELF binary, and if a section// of the specified type is found, set the output to this section header// and return true.  Otherwise, return false.// To keep stack consumption low, we would like this function to not get// inlined.static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(    const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type,    ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) {  ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);  const int buf_entries = tmp_buf_size / sizeof(buf[0]);  const int buf_bytes = buf_entries * sizeof(buf[0]);  for (int i = 0; i < sh_num;) {    const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);    const ssize_t num_bytes_to_read =        (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;    const off_t offset = sh_offset + i * sizeof(buf[0]);    const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset);    if (len % sizeof(buf[0]) != 0) {      ABSL_RAW_LOG(          WARNING,          "Reading %zd bytes from offset %ju returned %zd which is not a "          "multiple of %zu.",          num_bytes_to_read, static_cast<uintmax_t>(offset), len,          sizeof(buf[0]));      return false;    }    const ssize_t num_headers_in_buf = len / sizeof(buf[0]);    SAFE_ASSERT(num_headers_in_buf <= buf_entries);    for (int j = 0; j < num_headers_in_buf; ++j) {      if (buf[j].sh_type == type) {        *out = buf[j];        return true;      }    }    i += num_headers_in_buf;  }  return false;}// There is no particular reason to limit section name to 63 characters,// but there has (as yet) been no need for anything longer either.const int kMaxSectionNameLen = 64;bool ForEachSection(int fd,                    const std::function<bool(const std::string &name,                                             const ElfW(Shdr) &)> &callback) {  ElfW(Ehdr) elf_header;  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {    return false;  }  ElfW(Shdr) shstrtab;  off_t shstrtab_offset =      (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);  if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {    return false;  }  for (int i = 0; i < elf_header.e_shnum; ++i) {    ElfW(Shdr) out;    off_t section_header_offset =        (elf_header.e_shoff + elf_header.e_shentsize * i);    if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) {      return false;    }    off_t name_offset = shstrtab.sh_offset + out.sh_name;    char header_name[kMaxSectionNameLen + 1];    ssize_t n_read =        ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset);    if (n_read == -1) {      return false;    } else if (n_read > kMaxSectionNameLen) {      // Long read?      return false;    }    header_name[n_read] = '\0';    std::string name(header_name);    if (!callback(name, out)) {      break;    }  }  return true;}// name_len should include terminating '\0'.bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,                            ElfW(Shdr) * out) {  char header_name[kMaxSectionNameLen];  if (sizeof(header_name) < name_len) {    ABSL_RAW_LOG(WARNING,                 "Section name '%s' is too long (%zu); "                 "section will not be found (even if present).",                 name, name_len);    // No point in even trying.    return false;  }  ElfW(Ehdr) elf_header;  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {    return false;  }  ElfW(Shdr) shstrtab;  off_t shstrtab_offset =      (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);  if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {    return false;  }  for (int i = 0; i < elf_header.e_shnum; ++i) {    off_t section_header_offset =        (elf_header.e_shoff + elf_header.e_shentsize * i);    if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {      return false;    }    off_t name_offset = shstrtab.sh_offset + out->sh_name;    ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);    if (n_read < 0) {      return false;    } else if (static_cast<size_t>(n_read) != name_len) {      // Short read -- name could be at end of file.      continue;    }    if (memcmp(header_name, name, name_len) == 0) {      return true;    }  }  return false;}// Compare symbols at in the same address.// Return true if we should pick symbol1.static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,                                  const ElfW(Sym) & symbol2) {  // If one of the symbols is weak and the other is not, pick the one  // this is not a weak symbol.  char bind1 = ELF_ST_BIND(symbol1.st_info);  char bind2 = ELF_ST_BIND(symbol1.st_info);  if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;  if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;  // If one of the symbols has zero size and the other is not, pick the  // one that has non-zero size.  if (symbol1.st_size != 0 && symbol2.st_size == 0) {    return true;  }  if (symbol1.st_size == 0 && symbol2.st_size != 0) {    return false;  }  // If one of the symbols has no type and the other is not, pick the  // one that has a type.  char type1 = ELF_ST_TYPE(symbol1.st_info);  char type2 = ELF_ST_TYPE(symbol1.st_info);  if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {    return true;  }  if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {    return false;  }  // Pick the first one, if we still cannot decide.  return true;}// Return true if an address is inside a section.static bool InSection(const void *address, const ElfW(Shdr) * section) {  const char *start = reinterpret_cast<const char *>(section->sh_addr);  size_t size = static_cast<size_t>(section->sh_size);  return start <= address && address < (start + size);}static const char *ComputeOffset(const char *base, ptrdiff_t offset) {  // Note: cast to uintptr_t to avoid undefined behavior when base evaluates to  // zero and offset is non-zero.  return reinterpret_cast<const char *>(      reinterpret_cast<uintptr_t>(base) + offset);}// Read a symbol table and look for the symbol containing the// pc. Iterate over symbols in a symbol table and look for the symbol// containing "pc".  If the symbol is found, and its name fits in// out_size, the name is written into out and SYMBOL_FOUND is returned.// If the name does not fit, truncated name is written into out,// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.// If the symbol is not found, SYMBOL_NOT_FOUND is returned;// To keep stack consumption low, we would like this function to not get// inlined.static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(    const void *const pc, const int fd, char *out, int out_size,    ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,    const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) {  if (symtab == nullptr) {    return SYMBOL_NOT_FOUND;  }  // Read multiple symbols at once to save read() calls.  ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);  const int buf_entries = tmp_buf_size / sizeof(buf[0]);  const int num_symbols = symtab->sh_size / symtab->sh_entsize;  // On platforms using an .opd section (PowerPC & IA64), a function symbol  // has the address of a function descriptor, which contains the real  // starting address.  However, we do not always want to use the real  // starting address because we sometimes want to symbolize a function  // pointer into the .opd section, e.g. FindSymbol(&foo,...).  const bool pc_in_opd =      kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd);  const bool deref_function_descriptor_pointer =      kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;  ElfW(Sym) best_match;  SafeMemZero(&best_match, sizeof(best_match));  bool found_match = false;  for (int i = 0; i < num_symbols;) {    off_t offset = symtab->sh_offset + i * symtab->sh_entsize;    const int num_remaining_symbols = num_symbols - i;    const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries);    const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);    const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset);    SAFE_ASSERT(len % sizeof(buf[0]) == 0);    const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);    SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);    for (int j = 0; j < num_symbols_in_buf; ++j) {      const ElfW(Sym) &symbol = buf[j];      // For a DSO, a symbol address is relocated by the loading address.      // We keep the original address for opd redirection below.      const char *const original_start_address =          reinterpret_cast<const char *>(symbol.st_value);      const char *start_address =          ComputeOffset(original_start_address, relocation);      if (deref_function_descriptor_pointer &&          InSection(original_start_address, opd)) {        // The opd section is mapped into memory.  Just dereference        // start_address to get the first double word, which points to the        // function entry.        start_address = *reinterpret_cast<const char *const *>(start_address);      }      // If pc is inside the .opd section, it points to a function descriptor.      const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;      const void *const end_address = ComputeOffset(start_address, size);      if (symbol.st_value != 0 &&  // Skip null value symbols.          symbol.st_shndx != 0 &&  // Skip undefined symbols.#ifdef STT_TLS          ELF_ST_TYPE(symbol.st_info) != STT_TLS &&  // Skip thread-local data.#endif                                               // STT_TLS          ((start_address <= pc && pc < end_address) ||           (start_address == pc && pc == end_address))) {        if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {          found_match = true;          best_match = symbol;        }      }    }    i += num_symbols_in_buf;  }  if (found_match) {    const size_t off = strtab->sh_offset + best_match.st_name;    const ssize_t n_read = ReadFromOffset(fd, out, out_size, off);    if (n_read <= 0) {      // This should never happen.      ABSL_RAW_LOG(WARNING,                   "Unable to read from fd %d at offset %zu: n_read = %zd", fd,                   off, n_read);      return SYMBOL_NOT_FOUND;    }    ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data.");    // strtab->sh_offset points into .strtab-like section that contains    // NUL-terminated strings: '\0foo\0barbaz\0...".    //    // sh_offset+st_name points to the start of symbol name, but we don't know    // how long the symbol is, so we try to read as much as we have space for,    // and usually over-read (i.e. there is a NUL somewhere before n_read).    if (memchr(out, '\0', n_read) == nullptr) {      // Either out_size was too small (n_read == out_size and no NUL), or      // we tried to read past the EOF (n_read < out_size) and .strtab is      // corrupt (missing terminating NUL; should never happen for valid ELF).      out[n_read - 1] = '\0';      return SYMBOL_TRUNCATED;    }    return SYMBOL_FOUND;  }  return SYMBOL_NOT_FOUND;}// Get the symbol name of "pc" from the file pointed by "fd".  Process// both regular and dynamic symbol tables if necessary.// See FindSymbol() comment for description of return value.FindSymbolResult Symbolizer::GetSymbolFromObjectFile(    const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,    char *out, int out_size, char *tmp_buf, int tmp_buf_size) {  ElfW(Shdr) symtab;  ElfW(Shdr) strtab;  ElfW(Shdr) opd;  ElfW(Shdr) *opd_ptr = nullptr;  // On platforms using an .opd sections for function descriptor, read  // the section header.  The .opd section is in data segment and should be  // loaded but we check that it is mapped just to be extra careful.  if (kPlatformUsesOPDSections) {    if (GetSectionHeaderByName(obj.fd, kOpdSectionName,                               sizeof(kOpdSectionName) - 1, &opd) &&        FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,                    opd.sh_size) != nullptr) {      opd_ptr = &opd;    } else {      return SYMBOL_NOT_FOUND;    }  }  // Consult a regular symbol table, then fall back to the dynamic symbol table.  for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) {    if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,                                obj.elf_header.e_shoff, symbol_table_type,                                &symtab, tmp_buf, tmp_buf_size)) {      continue;    }    if (!ReadFromOffsetExact(            obj.fd, &strtab, sizeof(strtab),            obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {      continue;    }    const FindSymbolResult rc =        FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,                   opd_ptr, tmp_buf, tmp_buf_size);    if (rc != SYMBOL_NOT_FOUND) {      return rc;    }  }  return SYMBOL_NOT_FOUND;}namespace {// Thin wrapper around a file descriptor so that the file descriptor// gets closed for sure.class FileDescriptor { public:  explicit FileDescriptor(int fd) : fd_(fd) {}  FileDescriptor(const FileDescriptor &) = delete;  FileDescriptor &operator=(const FileDescriptor &) = delete;  ~FileDescriptor() {    if (fd_ >= 0) {      NO_INTR(close(fd_));    }  }  int get() const { return fd_; } private:  const int fd_;};// Helper class for reading lines from file.//// Note: we don't use ProcMapsIterator since the object is big (it has// a 5k array member) and uses async-unsafe functions such as sscanf()// and snprintf().class LineReader { public:  explicit LineReader(int fd, char *buf, int buf_len)      : fd_(fd),        buf_len_(buf_len),        buf_(buf),        bol_(buf),        eol_(buf),        eod_(buf) {}  LineReader(const LineReader &) = delete;  LineReader &operator=(const LineReader &) = delete;  // Read '\n'-terminated line from file.  On success, modify "bol"  // and "eol", then return true.  Otherwise, return false.  //  // Note: if the last line doesn't end with '\n', the line will be  // dropped.  It's an intentional behavior to make the code simple.  bool ReadLine(const char **bol, const char **eol) {    if (BufferIsEmpty()) {  // First time.      const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);      if (num_bytes <= 0) {  // EOF or error.        return false;      }      eod_ = buf_ + num_bytes;      bol_ = buf_;    } else {      bol_ = eol_ + 1;            // Advance to the next line in the buffer.      SAFE_ASSERT(bol_ <= eod_);  // "bol_" can point to "eod_".      if (!HasCompleteLine()) {        const int incomplete_line_length = eod_ - bol_;        // Move the trailing incomplete line to the beginning.        memmove(buf_, bol_, incomplete_line_length);        // Read text from file and append it.        char *const append_pos = buf_ + incomplete_line_length;        const int capacity_left = buf_len_ - incomplete_line_length;        const ssize_t num_bytes =            ReadPersistent(fd_, append_pos, capacity_left);        if (num_bytes <= 0) {  // EOF or error.          return false;        }        eod_ = append_pos + num_bytes;        bol_ = buf_;      }    }    eol_ = FindLineFeed();    if (eol_ == nullptr) {  // '\n' not found.  Malformed line.      return false;    }    *eol_ = '\0';  // Replace '\n' with '\0'.    *bol = bol_;    *eol = eol_;    return true;  } private:  char *FindLineFeed() const {    return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));  }  bool BufferIsEmpty() const { return buf_ == eod_; }  bool HasCompleteLine() const {    return !BufferIsEmpty() && FindLineFeed() != nullptr;  }  const int fd_;  const int buf_len_;  char *const buf_;  char *bol_;  char *eol_;  const char *eod_;  // End of data in "buf_".};}  // namespace// Place the hex number read from "start" into "*hex".  The pointer to// the first non-hex character or "end" is returned.static const char *GetHex(const char *start, const char *end,                          uint64_t *const value) {  uint64_t hex = 0;  const char *p;  for (p = start; p < end; ++p) {    int ch = *p;    if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||        (ch >= 'a' && ch <= 'f')) {      hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);    } else {  // Encountered the first non-hex character.      break;    }  }  SAFE_ASSERT(p <= end);  *value = hex;  return p;}static const char *GetHex(const char *start, const char *end,                          const void **const addr) {  uint64_t hex = 0;  const char *p = GetHex(start, end, &hex);  *addr = reinterpret_cast<void *>(hex);  return p;}// Normally we are only interested in "r?x" maps.// On the PowerPC, function pointers point to descriptors in the .opd// section.  The descriptors themselves are not executable code, so// we need to relax the check below to "r??".static bool ShouldUseMapping(const char *const flags) {  return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x');}// Read /proc/self/maps and run "callback" for each mmapped file found.  If// "callback" returns false, stop scanning and return true. Else continue// scanning /proc/self/maps. Return true if no parse error is found.static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(    bool (*callback)(const char *filename, const void *const start_addr,                     const void *const end_addr, uint64_t offset, void *arg),    void *arg, void *tmp_buf, int tmp_buf_size) {  // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter  // requires kernel to stop all threads, and is significantly slower when there  // are 1000s of threads.  char maps_path[80];  snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());  int maps_fd;  NO_INTR(maps_fd = open(maps_path, O_RDONLY));  FileDescriptor wrapped_maps_fd(maps_fd);  if (wrapped_maps_fd.get() < 0) {    ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);    return false;  }  // Iterate over maps and look for the map containing the pc.  Then  // look into the symbol tables inside.  LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),                    tmp_buf_size);  while (true) {    const char *cursor;    const char *eol;    if (!reader.ReadLine(&cursor, &eol)) {  // EOF or malformed line.      break;    }    const char *line = cursor;    const void *start_address;    // Start parsing line in /proc/self/maps.  Here is an example:    //    // 08048000-0804c000 r-xp 00000000 08:01 2142121    /bin/cat    //    // We want start address (08048000), end address (0804c000), flags    // (r-xp) and file name (/bin/cat).    // Read start address.    cursor = GetHex(cursor, eol, &start_address);    if (cursor == eol || *cursor != '-') {      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);      return false;    }    ++cursor;  // Skip '-'.    // Read end address.    const void *end_address;    cursor = GetHex(cursor, eol, &end_address);    if (cursor == eol || *cursor != ' ') {      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);      return false;    }    ++cursor;  // Skip ' '.    // Read flags.  Skip flags until we encounter a space or eol.    const char *const flags_start = cursor;    while (cursor < eol && *cursor != ' ') {      ++cursor;    }    // We expect at least four letters for flags (ex. "r-xp").    if (cursor == eol || cursor < flags_start + 4) {      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);      return false;    }    // Check flags.    if (!ShouldUseMapping(flags_start)) {      continue;  // We skip this map.    }    ++cursor;  // Skip ' '.    // Read file offset.    uint64_t offset;    cursor = GetHex(cursor, eol, &offset);    ++cursor;  // Skip ' '.    // Skip to file name.  "cursor" now points to dev.  We need to skip at least    // two spaces for dev and inode.    int num_spaces = 0;    while (cursor < eol) {      if (*cursor == ' ') {        ++num_spaces;      } else if (num_spaces >= 2) {        // The first non-space character after  skipping two spaces        // is the beginning of the file name.        break;      }      ++cursor;    }    // Check whether this entry corresponds to our hint table for the true    // filename.    bool hinted =        GetFileMappingHint(&start_address, &end_address, &offset, &cursor);    if (!hinted && (cursor == eol || cursor[0] == '[')) {      // not an object file, typically [vdso] or [vsyscall]      continue;    }    if (!callback(cursor, start_address, end_address, offset, arg)) break;  }  return true;}// Find the objfile mapped in address region containing [addr, addr + len).ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {  for (int i = 0; i < 2; ++i) {    if (!ok_) return nullptr;    // Read /proc/self/maps if necessary    if (!addr_map_read_) {      addr_map_read_ = true;      if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {        ok_ = false;        return nullptr;      }    }    int lo = 0;    int hi = addr_map_.Size();    while (lo < hi) {      int mid = (lo + hi) / 2;      if (addr < addr_map_.At(mid)->end_addr) {        hi = mid;      } else {        lo = mid + 1;      }    }    if (lo != addr_map_.Size()) {      ObjFile *obj = addr_map_.At(lo);      SAFE_ASSERT(obj->end_addr > addr);      if (addr >= obj->start_addr &&          reinterpret_cast<const char *>(addr) + len <= obj->end_addr)        return obj;    }    // The address mapping may have changed since it was last read.  Retry.    ClearAddrMap();  }  return nullptr;}void Symbolizer::ClearAddrMap() {  for (int i = 0; i != addr_map_.Size(); i++) {    ObjFile *o = addr_map_.At(i);    base_internal::LowLevelAlloc::Free(o->filename);    if (o->fd >= 0) {      NO_INTR(close(o->fd));    }  }  addr_map_.Clear();  addr_map_read_ = false;}// Callback for ReadAddrMap to register objfiles in an in-memory table.bool Symbolizer::RegisterObjFile(const char *filename,                                 const void *const start_addr,                                 const void *const end_addr, uint64_t offset,                                 void *arg) {  Symbolizer *impl = static_cast<Symbolizer *>(arg);  // Files are supposed to be added in the increasing address order.  Make  // sure that's the case.  int addr_map_size = impl->addr_map_.Size();  if (addr_map_size != 0) {    ObjFile *old = impl->addr_map_.At(addr_map_size - 1);    if (old->end_addr > end_addr) {      ABSL_RAW_LOG(ERROR,                   "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR                   ": %s",                   reinterpret_cast<uintptr_t>(end_addr), filename,                   reinterpret_cast<uintptr_t>(old->end_addr), old->filename);      return true;    } else if (old->end_addr == end_addr) {      // The same entry appears twice. This sometimes happens for [vdso].      if (old->start_addr != start_addr ||          strcmp(old->filename, filename) != 0) {        ABSL_RAW_LOG(ERROR,                     "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",                     reinterpret_cast<uintptr_t>(end_addr), filename,                     reinterpret_cast<uintptr_t>(old->end_addr), old->filename);      }      return true;    }  }  ObjFile *obj = impl->addr_map_.Add();  obj->filename = impl->CopyString(filename);  obj->start_addr = start_addr;  obj->end_addr = end_addr;  obj->offset = offset;  obj->elf_type = -1;  // filled on demand  obj->fd = -1;        // opened on demand  return true;}// This function wraps the Demangle function to provide an interface// where the input symbol is demangled in-place.// To keep stack consumption low, we would like this function to not// get inlined.static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size,                                                    char *tmp_buf,                                                    int tmp_buf_size) {  if (Demangle(out, tmp_buf, tmp_buf_size)) {    // Demangling succeeded. Copy to out if the space allows.    int len = strlen(tmp_buf);    if (len + 1 <= out_size) {  // +1 for '\0'.      SAFE_ASSERT(len < tmp_buf_size);      memmove(out, tmp_buf, len + 1);    }  }}SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {  uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);  pc0 >>= 3;  // drop the low 3 bits  // Shuffle bits.  pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);  return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];}void Symbolizer::AgeSymbols(SymbolCacheLine *line) {  for (uint32_t &age : line->age) {    ++age;  }}const char *Symbolizer::FindSymbolInCache(const void *const pc) {  if (pc == nullptr) return nullptr;  SymbolCacheLine *line = GetCacheLine(pc);  for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {    if (line->pc[i] == pc) {      AgeSymbols(line);      line->age[i] = 0;      return line->name[i];    }  }  return nullptr;}const char *Symbolizer::InsertSymbolInCache(const void *const pc,                                            const char *name) {  SAFE_ASSERT(pc != nullptr);  SymbolCacheLine *line = GetCacheLine(pc);  uint32_t max_age = 0;  int oldest_index = -1;  for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {    if (line->pc[i] == nullptr) {      AgeSymbols(line);      line->pc[i] = pc;      line->name[i] = CopyString(name);      line->age[i] = 0;      return line->name[i];    }    if (line->age[i] >= max_age) {      max_age = line->age[i];      oldest_index = i;    }  }  AgeSymbols(line);  ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache");  base_internal::LowLevelAlloc::Free(line->name[oldest_index]);  line->pc[oldest_index] = pc;  line->name[oldest_index] = CopyString(name);  line->age[oldest_index] = 0;  return line->name[oldest_index];}static void MaybeOpenFdFromSelfExe(ObjFile *obj) {  if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {    return;  }  int fd = open("/proc/self/exe", O_RDONLY);  if (fd == -1) {    return;  }  // Verify that contents of /proc/self/exe matches in-memory image of  // the binary. This can fail if the "deleted" binary is in fact not  // the main executable, or for binaries that have the first PT_LOAD  // segment smaller than 4K. We do it in four steps so that the  // buffer is smaller and we don't consume too much stack space.  const char *mem = reinterpret_cast<const char *>(obj->start_addr);  for (int i = 0; i < 4; ++i) {    char buf[1024];    ssize_t n = read(fd, buf, sizeof(buf));    if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {      close(fd);      return;    }    mem += sizeof(buf);  }  obj->fd = fd;}static bool MaybeInitializeObjFile(ObjFile *obj) {  if (obj->fd < 0) {    obj->fd = open(obj->filename, O_RDONLY);    if (obj->fd < 0) {      // Getting /proc/self/exe here means that we were hinted.      if (strcmp(obj->filename, "/proc/self/exe") == 0) {        // /proc/self/exe may be inaccessible (due to setuid, etc.), so try        // accessing the binary via argv0.        if (argv0_value != nullptr) {          obj->fd = open(argv0_value, O_RDONLY);        }      } else {        MaybeOpenFdFromSelfExe(obj);      }    }    if (obj->fd < 0) {      ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);      return false;    }    obj->elf_type = FileGetElfType(obj->fd);    if (obj->elf_type < 0) {      ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,                   obj->elf_type);      return false;    }    if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header),                             0)) {      ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);      return false;    }  }  return true;}// The implementation of our symbolization routine.  If it// successfully finds the symbol containing "pc" and obtains the// symbol name, returns pointer to that symbol. Otherwise, returns nullptr.// If any symbol decorators have been installed via InstallSymbolDecorator(),// they are called here as well.// To keep stack consumption low, we would like this function to not// get inlined.const char *Symbolizer::GetSymbol(const void *const pc) {  const char *entry = FindSymbolInCache(pc);  if (entry != nullptr) {    return entry;  }  symbol_buf_[0] = '\0';  ObjFile *const obj = FindObjFile(pc, 1);  ptrdiff_t relocation = 0;  int fd = -1;  if (obj != nullptr) {    if (MaybeInitializeObjFile(obj)) {      if (obj->elf_type == ET_DYN &&          reinterpret_cast<uint64_t>(obj->start_addr) >= obj->offset) {        // This object was relocated.        //        // For obj->offset > 0, adjust the relocation since a mapping at offset        // X in the file will have a start address of [true relocation]+X.        relocation = reinterpret_cast<ptrdiff_t>(obj->start_addr) - obj->offset;      }      fd = obj->fd;    }    if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,                                sizeof(symbol_buf_), tmp_buf_,                                sizeof(tmp_buf_)) == SYMBOL_FOUND) {      // Only try to demangle the symbol name if it fit into symbol_buf_.      DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,                      sizeof(tmp_buf_));    }  } else {#if ABSL_HAVE_VDSO_SUPPORT    VDSOSupport vdso;    if (vdso.IsPresent()) {      VDSOSupport::SymbolInfo symbol_info;      if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {        // All VDSO symbols are known to be short.        size_t len = strlen(symbol_info.name);        ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),                       "VDSO symbol unexpectedly long");        memcpy(symbol_buf_, symbol_info.name, len + 1);      }    }#endif  }  if (g_decorators_mu.TryLock()) {    if (g_num_decorators > 0) {      SymbolDecoratorArgs decorator_args = {          pc,       relocation,       fd,     symbol_buf_, sizeof(symbol_buf_),          tmp_buf_, sizeof(tmp_buf_), nullptr};      for (int i = 0; i < g_num_decorators; ++i) {        decorator_args.arg = g_decorators[i].arg;        g_decorators[i].fn(&decorator_args);      }    }    g_decorators_mu.Unlock();  }  if (symbol_buf_[0] == '\0') {    return nullptr;  }  symbol_buf_[sizeof(symbol_buf_) - 1] = '\0';  // Paranoia.  return InsertSymbolInCache(pc, symbol_buf_);}bool RemoveAllSymbolDecorators(void) {  if (!g_decorators_mu.TryLock()) {    // Someone else is using decorators. Get out.    return false;  }  g_num_decorators = 0;  g_decorators_mu.Unlock();  return true;}bool RemoveSymbolDecorator(int ticket) {  if (!g_decorators_mu.TryLock()) {    // Someone else is using decorators. Get out.    return false;  }  for (int i = 0; i < g_num_decorators; ++i) {    if (g_decorators[i].ticket == ticket) {      while (i < g_num_decorators - 1) {        g_decorators[i] = g_decorators[i + 1];        ++i;      }      g_num_decorators = i;      break;    }  }  g_decorators_mu.Unlock();  return true;  // Decorator is known to be removed.}int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {  static int ticket = 0;  if (!g_decorators_mu.TryLock()) {    // Someone else is using decorators. Get out.    return false;  }  int ret = ticket;  if (g_num_decorators >= kMaxDecorators) {    ret = -1;  } else {    g_decorators[g_num_decorators] = {decorator, arg, ticket++};    ++g_num_decorators;  }  g_decorators_mu.Unlock();  return ret;}bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,                             const char *filename) {  SAFE_ASSERT(start <= end);  SAFE_ASSERT(filename != nullptr);  InitSigSafeArena();  if (!g_file_mapping_mu.TryLock()) {    return false;  }  bool ret = true;  if (g_num_file_mapping_hints >= kMaxFileMappingHints) {    ret = false;  } else {    // TODO(ckennelly): Move this into a std::string copy routine.    int len = strlen(filename);    char *dst = static_cast<char *>(        base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));    ABSL_RAW_CHECK(dst != nullptr, "out of memory");    memcpy(dst, filename, len + 1);    auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];    hint.start = start;    hint.end = end;    hint.offset = offset;    hint.filename = dst;  }  g_file_mapping_mu.Unlock();  return ret;}bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,                        const char **filename) {  if (!g_file_mapping_mu.TryLock()) {    return false;  }  bool found = false;  for (int i = 0; i < g_num_file_mapping_hints; i++) {    if (g_file_mapping_hints[i].start <= *start &&        *end <= g_file_mapping_hints[i].end) {      // We assume that the start_address for the mapping is the base      // address of the ELF section, but when [start_address,end_address) is      // not strictly equal to [hint.start, hint.end), that assumption is      // invalid.      //      // This uses the hint's start address (even though hint.start is not      // necessarily equal to start_address) to ensure the correct      // relocation is computed later.      *start = g_file_mapping_hints[i].start;      *end = g_file_mapping_hints[i].end;      *offset = g_file_mapping_hints[i].offset;      *filename = g_file_mapping_hints[i].filename;      found = true;      break;    }  }  g_file_mapping_mu.Unlock();  return found;}}  // namespace debugging_internalbool Symbolize(const void *pc, char *out, int out_size) {  // Symbolization is very slow under tsan.  ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();  SAFE_ASSERT(out_size >= 0);  debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();  const char *name = s->GetSymbol(pc);  bool ok = false;  if (name != nullptr && out_size > 0) {    strncpy(out, name, out_size);    ok = true;    if (out[out_size - 1] != '\0') {      // strncpy() does not '\0' terminate when it truncates.  Do so, with      // trailing ellipsis.      static constexpr char kEllipsis[] = "...";      int ellipsis_size =          std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1);      memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size);      out[out_size - 1] = '\0';    }  }  debugging_internal::FreeSymbolizer(s);  ANNOTATE_IGNORE_READS_AND_WRITES_END();  return ok;}ABSL_NAMESPACE_END}  // namespace absl
 |