| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include <cstdint>#include <mutex>  // NOLINT(build/c++11)#include <vector>#include "absl/base/config.h"#include "absl/base/internal/cycleclock.h"#include "absl/base/internal/spinlock.h"#include "absl/synchronization/blocking_counter.h"#include "absl/synchronization/internal/thread_pool.h"#include "absl/synchronization/mutex.h"#include "benchmark/benchmark.h"namespace {void BM_Mutex(benchmark::State& state) {  static absl::Mutex* mu = new absl::Mutex;  for (auto _ : state) {    absl::MutexLock lock(mu);  }}BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu();static void DelayNs(int64_t ns, int* data) {  int64_t end = absl::base_internal::CycleClock::Now() +                ns * absl::base_internal::CycleClock::Frequency() / 1e9;  while (absl::base_internal::CycleClock::Now() < end) {    ++(*data);    benchmark::DoNotOptimize(*data);  }}template <typename MutexType>class RaiiLocker { public:  explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); }  ~RaiiLocker() { mu_->Unlock(); } private:  MutexType* mu_;};template <>class RaiiLocker<std::mutex> { public:  explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); }  ~RaiiLocker() { mu_->unlock(); } private:  std::mutex* mu_;};template <typename MutexType>void BM_Contended(benchmark::State& state) {  struct Shared {    MutexType mu;    int data = 0;  };  static auto* shared = new Shared;  int local = 0;  for (auto _ : state) {    // Here we model both local work outside of the critical section as well as    // some work inside of the critical section. The idea is to capture some    // more or less realisitic contention levels.    // If contention is too low, the benchmark won't measure anything useful.    // If contention is unrealistically high, the benchmark will favor    // bad mutex implementations that block and otherwise distract threads    // from the mutex and shared state for as much as possible.    // To achieve this amount of local work is multiplied by number of threads    // to keep ratio between local work and critical section approximately    // equal regardless of number of threads.    DelayNs(100 * state.threads, &local);    RaiiLocker<MutexType> locker(&shared->mu);    DelayNs(state.range(0), &shared->data);  }}BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex)    ->UseRealTime()    // ThreadPerCpu poorly handles non-power-of-two CPU counts.    ->Threads(1)    ->Threads(2)    ->Threads(4)    ->Threads(6)    ->Threads(8)    ->Threads(12)    ->Threads(16)    ->Threads(24)    ->Threads(32)    ->Threads(48)    ->Threads(64)    ->Threads(96)    ->Threads(128)    ->Threads(192)    ->Threads(256)    // Some empirically chosen amounts of work in critical section.    // 1 is low contention, 200 is high contention and few values in between.    ->Arg(1)    ->Arg(20)    ->Arg(50)    ->Arg(200);BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock)    ->UseRealTime()    // ThreadPerCpu poorly handles non-power-of-two CPU counts.    ->Threads(1)    ->Threads(2)    ->Threads(4)    ->Threads(6)    ->Threads(8)    ->Threads(12)    ->Threads(16)    ->Threads(24)    ->Threads(32)    ->Threads(48)    ->Threads(64)    ->Threads(96)    ->Threads(128)    ->Threads(192)    ->Threads(256)    // Some empirically chosen amounts of work in critical section.    // 1 is low contention, 200 is high contention and few values in between.    ->Arg(1)    ->Arg(20)    ->Arg(50)    ->Arg(200);BENCHMARK_TEMPLATE(BM_Contended, std::mutex)    ->UseRealTime()    // ThreadPerCpu poorly handles non-power-of-two CPU counts.    ->Threads(1)    ->Threads(2)    ->Threads(4)    ->Threads(6)    ->Threads(8)    ->Threads(12)    ->Threads(16)    ->Threads(24)    ->Threads(32)    ->Threads(48)    ->Threads(64)    ->Threads(96)    ->Threads(128)    ->Threads(192)    ->Threads(256)    // Some empirically chosen amounts of work in critical section.    // 1 is low contention, 200 is high contention and few values in between.    ->Arg(1)    ->Arg(20)    ->Arg(50)    ->Arg(200);// Measure the overhead of conditions on mutex release (when they must be// evaluated).  Mutex has (some) support for equivalence classes allowing// Conditions with the same function/argument to potentially not be multiply// evaluated.//// num_classes==0 is used for the special case of every waiter being distinct.void BM_ConditionWaiters(benchmark::State& state) {  int num_classes = state.range(0);  int num_waiters = state.range(1);  struct Helper {    static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) {      init->DecrementCount();      m->LockWhen(absl::Condition(          static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p));      m->Unlock();    }  };  if (num_classes == 0) {    // No equivalence classes.    num_classes = num_waiters;  }  absl::BlockingCounter init(num_waiters);  absl::Mutex mu;  std::vector<int> equivalence_classes(num_classes, 1);  // Must be declared last to be destroyed first.  absl::synchronization_internal::ThreadPool pool(num_waiters);  for (int i = 0; i < num_waiters; i++) {    // Mutex considers Conditions with the same function and argument    // to be equivalent.    pool.Schedule([&, i] {      Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]);    });  }  init.Wait();  for (auto _ : state) {    mu.Lock();    mu.Unlock();  // Each unlock requires Condition evaluation for our waiters.  }  mu.Lock();  for (int i = 0; i < num_classes; i++) {    equivalence_classes[i] = 0;  }  mu.Unlock();}// Some configurations have higher thread limits than others.#if defined(__linux__) && !defined(ABSL_HAVE_THREAD_SANITIZER)constexpr int kMaxConditionWaiters = 8192;#elseconstexpr int kMaxConditionWaiters = 1024;#endifBENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters);}  // namespace
 |