| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/numeric/int128.h"#include <stddef.h>#include <cassert>#include <iomanip>#include <ostream>  // NOLINT(readability/streams)#include <sstream>#include <string>#include <type_traits>#include "absl/base/internal/bits.h"#include "absl/base/optimization.h"namespace absl {ABSL_NAMESPACE_BEGINABSL_DLL const uint128 kuint128max = MakeUint128(    std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max());namespace {// Returns the 0-based position of the last set bit (i.e., most significant bit)// in the given uint128. The argument is not 0.//// For example://   Given: 5 (decimal) == 101 (binary)//   Returns: 2inline ABSL_ATTRIBUTE_ALWAYS_INLINE int Fls128(uint128 n) {  if (uint64_t hi = Uint128High64(n)) {    ABSL_INTERNAL_ASSUME(hi != 0);    return 127 - base_internal::CountLeadingZeros64(hi);  }  const uint64_t low = Uint128Low64(n);  ABSL_INTERNAL_ASSUME(low != 0);  return 63 - base_internal::CountLeadingZeros64(low);}// Long division/modulo for uint128 implemented using the shift-subtract// division algorithm adapted from:// https://stackoverflow.com/questions/5386377/division-without-usinginline void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret,                       uint128* remainder_ret) {  assert(divisor != 0);  if (divisor > dividend) {    *quotient_ret = 0;    *remainder_ret = dividend;    return;  }  if (divisor == dividend) {    *quotient_ret = 1;    *remainder_ret = 0;    return;  }  uint128 denominator = divisor;  uint128 quotient = 0;  // Left aligns the MSB of the denominator and the dividend.  const int shift = Fls128(dividend) - Fls128(denominator);  denominator <<= shift;  // Uses shift-subtract algorithm to divide dividend by denominator. The  // remainder will be left in dividend.  for (int i = 0; i <= shift; ++i) {    quotient <<= 1;    if (dividend >= denominator) {      dividend -= denominator;      quotient |= 1;    }    denominator >>= 1;  }  *quotient_ret = quotient;  *remainder_ret = dividend;}template <typename T>uint128 MakeUint128FromFloat(T v) {  static_assert(std::is_floating_point<T>::value, "");  // Rounding behavior is towards zero, same as for built-in types.  // Undefined behavior if v is NaN or cannot fit into uint128.  assert(std::isfinite(v) && v > -1 &&         (std::numeric_limits<T>::max_exponent <= 128 ||          v < std::ldexp(static_cast<T>(1), 128)));  if (v >= std::ldexp(static_cast<T>(1), 64)) {    uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));    uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));    return MakeUint128(hi, lo);  }  return MakeUint128(0, static_cast<uint64_t>(v));}#if defined(__clang__) && !defined(__SSE3__)// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289// Casting from long double to uint64_t is miscompiled and drops bits.// It is more work, so only use when we need the workaround.uint128 MakeUint128FromFloat(long double v) {  // Go 50 bits at a time, that fits in a double  static_assert(std::numeric_limits<double>::digits >= 50, "");  static_assert(std::numeric_limits<long double>::digits <= 150, "");  // Undefined behavior if v is not finite or cannot fit into uint128.  assert(std::isfinite(v) && v > -1 && v < std::ldexp(1.0L, 128));  v = std::ldexp(v, -100);  uint64_t w0 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));  v = std::ldexp(v - static_cast<double>(w0), 50);  uint64_t w1 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));  v = std::ldexp(v - static_cast<double>(w1), 50);  uint64_t w2 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));  return (static_cast<uint128>(w0) << 100) | (static_cast<uint128>(w1) << 50) |         static_cast<uint128>(w2);}#endif  // __clang__ && !__SSE3__}  // namespaceuint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {}uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {}uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {}uint128 operator/(uint128 lhs, uint128 rhs) {#if defined(ABSL_HAVE_INTRINSIC_INT128)  return static_cast<unsigned __int128>(lhs) /         static_cast<unsigned __int128>(rhs);#else  // ABSL_HAVE_INTRINSIC_INT128  uint128 quotient = 0;  uint128 remainder = 0;  DivModImpl(lhs, rhs, "ient, &remainder);  return quotient;#endif  // ABSL_HAVE_INTRINSIC_INT128}uint128 operator%(uint128 lhs, uint128 rhs) {#if defined(ABSL_HAVE_INTRINSIC_INT128)  return static_cast<unsigned __int128>(lhs) %         static_cast<unsigned __int128>(rhs);#else  // ABSL_HAVE_INTRINSIC_INT128  uint128 quotient = 0;  uint128 remainder = 0;  DivModImpl(lhs, rhs, "ient, &remainder);  return remainder;#endif  // ABSL_HAVE_INTRINSIC_INT128}namespace {std::string Uint128ToFormattedString(uint128 v, std::ios_base::fmtflags flags) {  // Select a divisor which is the largest power of the base < 2^64.  uint128 div;  int div_base_log;  switch (flags & std::ios::basefield) {    case std::ios::hex:      div = 0x1000000000000000;  // 16^15      div_base_log = 15;      break;    case std::ios::oct:      div = 01000000000000000000000;  // 8^21      div_base_log = 21;      break;    default:  // std::ios::dec      div = 10000000000000000000u;  // 10^19      div_base_log = 19;      break;  }  // Now piece together the uint128 representation from three chunks of the  // original value, each less than "div" and therefore representable as a  // uint64_t.  std::ostringstream os;  std::ios_base::fmtflags copy_mask =      std::ios::basefield | std::ios::showbase | std::ios::uppercase;  os.setf(flags & copy_mask, copy_mask);  uint128 high = v;  uint128 low;  DivModImpl(high, div, &high, &low);  uint128 mid;  DivModImpl(high, div, &high, &mid);  if (Uint128Low64(high) != 0) {    os << Uint128Low64(high);    os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);    os << Uint128Low64(mid);    os << std::setw(div_base_log);  } else if (Uint128Low64(mid) != 0) {    os << Uint128Low64(mid);    os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);  }  os << Uint128Low64(low);  return os.str();}}  // namespacestd::ostream& operator<<(std::ostream& os, uint128 v) {  std::ios_base::fmtflags flags = os.flags();  std::string rep = Uint128ToFormattedString(v, flags);  // Add the requisite padding.  std::streamsize width = os.width(0);  if (static_cast<size_t>(width) > rep.size()) {    std::ios::fmtflags adjustfield = flags & std::ios::adjustfield;    if (adjustfield == std::ios::left) {      rep.append(width - rep.size(), os.fill());    } else if (adjustfield == std::ios::internal &&               (flags & std::ios::showbase) &&               (flags & std::ios::basefield) == std::ios::hex && v != 0) {      rep.insert(2, width - rep.size(), os.fill());    } else {      rep.insert(0, width - rep.size(), os.fill());    }  }  return os << rep;}namespace {uint128 UnsignedAbsoluteValue(int128 v) {  // Cast to uint128 before possibly negating because -Int128Min() is undefined.  return Int128High64(v) < 0 ? -uint128(v) : uint128(v);}}  // namespace#if !defined(ABSL_HAVE_INTRINSIC_INT128)namespace {template <typename T>int128 MakeInt128FromFloat(T v) {  // Conversion when v is NaN or cannot fit into int128 would be undefined  // behavior if using an intrinsic 128-bit integer.  assert(std::isfinite(v) && (std::numeric_limits<T>::max_exponent <= 127 ||                              (v >= -std::ldexp(static_cast<T>(1), 127) &&                               v < std::ldexp(static_cast<T>(1), 127))));  // We must convert the absolute value and then negate as needed, because  // floating point types are typically sign-magnitude. Otherwise, the  // difference between the high and low 64 bits when interpreted as two's  // complement overwhelms the precision of the mantissa.  uint128 result = v < 0 ? -MakeUint128FromFloat(-v) : MakeUint128FromFloat(v);  return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(result)),                    Uint128Low64(result));}}  // namespaceint128::int128(float v) : int128(MakeInt128FromFloat(v)) {}int128::int128(double v) : int128(MakeInt128FromFloat(v)) {}int128::int128(long double v) : int128(MakeInt128FromFloat(v)) {}int128 operator/(int128 lhs, int128 rhs) {  assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.  uint128 quotient = 0;  uint128 remainder = 0;  DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),             "ient, &remainder);  if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient;  return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(quotient)),                    Uint128Low64(quotient));}int128 operator%(int128 lhs, int128 rhs) {  assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.  uint128 quotient = 0;  uint128 remainder = 0;  DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),             "ient, &remainder);  if (Int128High64(lhs) < 0) remainder = -remainder;  return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(remainder)),                    Uint128Low64(remainder));}#endif  // ABSL_HAVE_INTRINSIC_INT128std::ostream& operator<<(std::ostream& os, int128 v) {  std::ios_base::fmtflags flags = os.flags();  std::string rep;  // Add the sign if needed.  bool print_as_decimal =      (flags & std::ios::basefield) == std::ios::dec ||      (flags & std::ios::basefield) == std::ios_base::fmtflags();  if (print_as_decimal) {    if (Int128High64(v) < 0) {      rep = "-";    } else if (flags & std::ios::showpos) {      rep = "+";    }  }  rep.append(Uint128ToFormattedString(      print_as_decimal ? UnsignedAbsoluteValue(v) : uint128(v), os.flags()));  // Add the requisite padding.  std::streamsize width = os.width(0);  if (static_cast<size_t>(width) > rep.size()) {    switch (flags & std::ios::adjustfield) {      case std::ios::left:        rep.append(width - rep.size(), os.fill());        break;      case std::ios::internal:        if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) {          rep.insert(1, width - rep.size(), os.fill());        } else if ((flags & std::ios::basefield) == std::ios::hex &&                   (flags & std::ios::showbase) && v != 0) {          rep.insert(2, width - rep.size(), os.fill());        } else {          rep.insert(0, width - rep.size(), os.fill());        }        break;      default:  // std::ios::right        rep.insert(0, width - rep.size(), os.fill());        break;    }  }  return os << rep;}ABSL_NAMESPACE_END}  // namespace abslnamespace std {constexpr bool numeric_limits<absl::uint128>::is_specialized;constexpr bool numeric_limits<absl::uint128>::is_signed;constexpr bool numeric_limits<absl::uint128>::is_integer;constexpr bool numeric_limits<absl::uint128>::is_exact;constexpr bool numeric_limits<absl::uint128>::has_infinity;constexpr bool numeric_limits<absl::uint128>::has_quiet_NaN;constexpr bool numeric_limits<absl::uint128>::has_signaling_NaN;constexpr float_denorm_style numeric_limits<absl::uint128>::has_denorm;constexpr bool numeric_limits<absl::uint128>::has_denorm_loss;constexpr float_round_style numeric_limits<absl::uint128>::round_style;constexpr bool numeric_limits<absl::uint128>::is_iec559;constexpr bool numeric_limits<absl::uint128>::is_bounded;constexpr bool numeric_limits<absl::uint128>::is_modulo;constexpr int numeric_limits<absl::uint128>::digits;constexpr int numeric_limits<absl::uint128>::digits10;constexpr int numeric_limits<absl::uint128>::max_digits10;constexpr int numeric_limits<absl::uint128>::radix;constexpr int numeric_limits<absl::uint128>::min_exponent;constexpr int numeric_limits<absl::uint128>::min_exponent10;constexpr int numeric_limits<absl::uint128>::max_exponent;constexpr int numeric_limits<absl::uint128>::max_exponent10;constexpr bool numeric_limits<absl::uint128>::traps;constexpr bool numeric_limits<absl::uint128>::tinyness_before;constexpr bool numeric_limits<absl::int128>::is_specialized;constexpr bool numeric_limits<absl::int128>::is_signed;constexpr bool numeric_limits<absl::int128>::is_integer;constexpr bool numeric_limits<absl::int128>::is_exact;constexpr bool numeric_limits<absl::int128>::has_infinity;constexpr bool numeric_limits<absl::int128>::has_quiet_NaN;constexpr bool numeric_limits<absl::int128>::has_signaling_NaN;constexpr float_denorm_style numeric_limits<absl::int128>::has_denorm;constexpr bool numeric_limits<absl::int128>::has_denorm_loss;constexpr float_round_style numeric_limits<absl::int128>::round_style;constexpr bool numeric_limits<absl::int128>::is_iec559;constexpr bool numeric_limits<absl::int128>::is_bounded;constexpr bool numeric_limits<absl::int128>::is_modulo;constexpr int numeric_limits<absl::int128>::digits;constexpr int numeric_limits<absl::int128>::digits10;constexpr int numeric_limits<absl::int128>::max_digits10;constexpr int numeric_limits<absl::int128>::radix;constexpr int numeric_limits<absl::int128>::min_exponent;constexpr int numeric_limits<absl::int128>::min_exponent10;constexpr int numeric_limits<absl::int128>::max_exponent;constexpr int numeric_limits<absl::int128>::max_exponent10;constexpr bool numeric_limits<absl::int128>::traps;constexpr bool numeric_limits<absl::int128>::tinyness_before;}  // namespace std
 |