| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_#define ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_#include <algorithm>#include <initializer_list>#include <iterator>#include <utility>#include "absl/base/internal/throw_delegate.h"#include "absl/container/internal/btree.h"  // IWYU pragma: export#include "absl/container/internal/common.h"#include "absl/meta/type_traits.h"namespace absl {ABSL_NAMESPACE_BEGINnamespace container_internal {// A common base class for btree_set, btree_map, btree_multiset, and// btree_multimap.template <typename Tree>class btree_container {  using params_type = typename Tree::params_type; protected:  // Alias used for heterogeneous lookup functions.  // `key_arg<K>` evaluates to `K` when the functors are transparent and to  // `key_type` otherwise. It permits template argument deduction on `K` for the  // transparent case.  template <class K>  using key_arg =      typename KeyArg<IsTransparent<typename Tree::key_compare>::value>::          template type<K, typename Tree::key_type>; public:  using key_type = typename Tree::key_type;  using value_type = typename Tree::value_type;  using size_type = typename Tree::size_type;  using difference_type = typename Tree::difference_type;  using key_compare = typename Tree::key_compare;  using value_compare = typename Tree::value_compare;  using allocator_type = typename Tree::allocator_type;  using reference = typename Tree::reference;  using const_reference = typename Tree::const_reference;  using pointer = typename Tree::pointer;  using const_pointer = typename Tree::const_pointer;  using iterator = typename Tree::iterator;  using const_iterator = typename Tree::const_iterator;  using reverse_iterator = typename Tree::reverse_iterator;  using const_reverse_iterator = typename Tree::const_reverse_iterator;  using node_type = typename Tree::node_handle_type;  // Constructors/assignments.  btree_container() : tree_(key_compare(), allocator_type()) {}  explicit btree_container(const key_compare &comp,                           const allocator_type &alloc = allocator_type())      : tree_(comp, alloc) {}  btree_container(const btree_container &other) = default;  btree_container(btree_container &&other) noexcept = default;  btree_container &operator=(const btree_container &other) = default;  btree_container &operator=(btree_container &&other) noexcept(      std::is_nothrow_move_assignable<Tree>::value) = default;  // Iterator routines.  iterator begin() { return tree_.begin(); }  const_iterator begin() const { return tree_.begin(); }  const_iterator cbegin() const { return tree_.begin(); }  iterator end() { return tree_.end(); }  const_iterator end() const { return tree_.end(); }  const_iterator cend() const { return tree_.end(); }  reverse_iterator rbegin() { return tree_.rbegin(); }  const_reverse_iterator rbegin() const { return tree_.rbegin(); }  const_reverse_iterator crbegin() const { return tree_.rbegin(); }  reverse_iterator rend() { return tree_.rend(); }  const_reverse_iterator rend() const { return tree_.rend(); }  const_reverse_iterator crend() const { return tree_.rend(); }  // Lookup routines.  template <typename K = key_type>  iterator find(const key_arg<K> &key) {    return tree_.find(key);  }  template <typename K = key_type>  const_iterator find(const key_arg<K> &key) const {    return tree_.find(key);  }  template <typename K = key_type>  bool contains(const key_arg<K> &key) const {    return find(key) != end();  }  template <typename K = key_type>  iterator lower_bound(const key_arg<K> &key) {    return tree_.lower_bound(key);  }  template <typename K = key_type>  const_iterator lower_bound(const key_arg<K> &key) const {    return tree_.lower_bound(key);  }  template <typename K = key_type>  iterator upper_bound(const key_arg<K> &key) {    return tree_.upper_bound(key);  }  template <typename K = key_type>  const_iterator upper_bound(const key_arg<K> &key) const {    return tree_.upper_bound(key);  }  template <typename K = key_type>  std::pair<iterator, iterator> equal_range(const key_arg<K> &key) {    return tree_.equal_range(key);  }  template <typename K = key_type>  std::pair<const_iterator, const_iterator> equal_range(      const key_arg<K> &key) const {    return tree_.equal_range(key);  }  // Deletion routines. Note that there is also a deletion routine that is  // specific to btree_set_container/btree_multiset_container.  // Erase the specified iterator from the btree. The iterator must be valid  // (i.e. not equal to end()).  Return an iterator pointing to the node after  // the one that was erased (or end() if none exists).  iterator erase(const_iterator iter) { return tree_.erase(iterator(iter)); }  iterator erase(iterator iter) { return tree_.erase(iter); }  iterator erase(const_iterator first, const_iterator last) {    return tree_.erase_range(iterator(first), iterator(last)).second;  }  // Extract routines.  node_type extract(iterator position) {    // Use Move instead of Transfer, because the rebalancing code expects to    // have a valid object to scribble metadata bits on top of.    auto node = CommonAccess::Move<node_type>(get_allocator(), position.slot());    erase(position);    return node;  }  node_type extract(const_iterator position) {    return extract(iterator(position));  } public:  // Utility routines.  void clear() { tree_.clear(); }  void swap(btree_container &other) { tree_.swap(other.tree_); }  void verify() const { tree_.verify(); }  // Size routines.  size_type size() const { return tree_.size(); }  size_type max_size() const { return tree_.max_size(); }  bool empty() const { return tree_.empty(); }  friend bool operator==(const btree_container &x, const btree_container &y) {    if (x.size() != y.size()) return false;    return std::equal(x.begin(), x.end(), y.begin());  }  friend bool operator!=(const btree_container &x, const btree_container &y) {    return !(x == y);  }  friend bool operator<(const btree_container &x, const btree_container &y) {    return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());  }  friend bool operator>(const btree_container &x, const btree_container &y) {    return y < x;  }  friend bool operator<=(const btree_container &x, const btree_container &y) {    return !(y < x);  }  friend bool operator>=(const btree_container &x, const btree_container &y) {    return !(x < y);  }  // The allocator used by the btree.  allocator_type get_allocator() const { return tree_.get_allocator(); }  // The key comparator used by the btree.  key_compare key_comp() const { return tree_.key_comp(); }  value_compare value_comp() const { return tree_.value_comp(); }  // Support absl::Hash.  template <typename State>  friend State AbslHashValue(State h, const btree_container &b) {    for (const auto &v : b) {      h = State::combine(std::move(h), v);    }    return State::combine(std::move(h), b.size());  } protected:  Tree tree_;};// A common base class for btree_set and btree_map.template <typename Tree>class btree_set_container : public btree_container<Tree> {  using super_type = btree_container<Tree>;  using params_type = typename Tree::params_type;  using init_type = typename params_type::init_type;  using is_key_compare_to = typename params_type::is_key_compare_to;  friend class BtreeNodePeer; protected:  template <class K>  using key_arg = typename super_type::template key_arg<K>; public:  using key_type = typename Tree::key_type;  using value_type = typename Tree::value_type;  using size_type = typename Tree::size_type;  using key_compare = typename Tree::key_compare;  using allocator_type = typename Tree::allocator_type;  using iterator = typename Tree::iterator;  using const_iterator = typename Tree::const_iterator;  using node_type = typename super_type::node_type;  using insert_return_type = InsertReturnType<iterator, node_type>;  // Inherit constructors.  using super_type::super_type;  btree_set_container() {}  // Range constructor.  template <class InputIterator>  btree_set_container(InputIterator b, InputIterator e,                      const key_compare &comp = key_compare(),                      const allocator_type &alloc = allocator_type())      : super_type(comp, alloc) {    insert(b, e);  }  // Initializer list constructor.  btree_set_container(std::initializer_list<init_type> init,                      const key_compare &comp = key_compare(),                      const allocator_type &alloc = allocator_type())      : btree_set_container(init.begin(), init.end(), comp, alloc) {}  // Lookup routines.  template <typename K = key_type>  size_type count(const key_arg<K> &key) const {    return this->tree_.count_unique(key);  }  // Insertion routines.  std::pair<iterator, bool> insert(const value_type &v) {    return this->tree_.insert_unique(params_type::key(v), v);  }  std::pair<iterator, bool> insert(value_type &&v) {    return this->tree_.insert_unique(params_type::key(v), std::move(v));  }  template <typename... Args>  std::pair<iterator, bool> emplace(Args &&... args) {    init_type v(std::forward<Args>(args)...);    return this->tree_.insert_unique(params_type::key(v), std::move(v));  }  iterator insert(const_iterator hint, const value_type &v) {    return this->tree_        .insert_hint_unique(iterator(hint), params_type::key(v), v)        .first;  }  iterator insert(const_iterator hint, value_type &&v) {    return this->tree_        .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v))        .first;  }  template <typename... Args>  iterator emplace_hint(const_iterator hint, Args &&... args) {    init_type v(std::forward<Args>(args)...);    return this->tree_        .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v))        .first;  }  template <typename InputIterator>  void insert(InputIterator b, InputIterator e) {    this->tree_.insert_iterator_unique(b, e, 0);  }  void insert(std::initializer_list<init_type> init) {    this->tree_.insert_iterator_unique(init.begin(), init.end(), 0);  }  insert_return_type insert(node_type &&node) {    if (!node) return {this->end(), false, node_type()};    std::pair<iterator, bool> res =        this->tree_.insert_unique(params_type::key(CommonAccess::GetSlot(node)),                                  CommonAccess::GetSlot(node));    if (res.second) {      CommonAccess::Destroy(&node);      return {res.first, true, node_type()};    } else {      return {res.first, false, std::move(node)};    }  }  iterator insert(const_iterator hint, node_type &&node) {    if (!node) return this->end();    std::pair<iterator, bool> res = this->tree_.insert_hint_unique(        iterator(hint), params_type::key(CommonAccess::GetSlot(node)),        CommonAccess::GetSlot(node));    if (res.second) CommonAccess::Destroy(&node);    return res.first;  }  // Deletion routines.  // TODO(ezb): we should support heterogeneous comparators that have different  // behavior for K!=key_type.  template <typename K = key_type>  size_type erase(const key_arg<K> &key) {    return this->tree_.erase_unique(key);  }  using super_type::erase;  // Node extraction routines.  template <typename K = key_type>  node_type extract(const key_arg<K> &key) {    auto it = this->find(key);    return it == this->end() ? node_type() : extract(it);  }  using super_type::extract;  // Merge routines.  // Moves elements from `src` into `this`. If the element already exists in  // `this`, it is left unmodified in `src`.  template <      typename T,      typename absl::enable_if_t<          absl::conjunction<              std::is_same<value_type, typename T::value_type>,              std::is_same<allocator_type, typename T::allocator_type>,              std::is_same<typename params_type::is_map_container,                           typename T::params_type::is_map_container>>::value,          int> = 0>  void merge(btree_container<T> &src) {  // NOLINT    for (auto src_it = src.begin(); src_it != src.end();) {      if (insert(std::move(*src_it)).second) {        src_it = src.erase(src_it);      } else {        ++src_it;      }    }  }  template <      typename T,      typename absl::enable_if_t<          absl::conjunction<              std::is_same<value_type, typename T::value_type>,              std::is_same<allocator_type, typename T::allocator_type>,              std::is_same<typename params_type::is_map_container,                           typename T::params_type::is_map_container>>::value,          int> = 0>  void merge(btree_container<T> &&src) {    merge(src);  }};// Base class for btree_map.template <typename Tree>class btree_map_container : public btree_set_container<Tree> {  using super_type = btree_set_container<Tree>;  using params_type = typename Tree::params_type; private:  template <class K>  using key_arg = typename super_type::template key_arg<K>; public:  using key_type = typename Tree::key_type;  using mapped_type = typename params_type::mapped_type;  using value_type = typename Tree::value_type;  using key_compare = typename Tree::key_compare;  using allocator_type = typename Tree::allocator_type;  using iterator = typename Tree::iterator;  using const_iterator = typename Tree::const_iterator;  // Inherit constructors.  using super_type::super_type;  btree_map_container() {}  // Insertion routines.  // Note: the nullptr template arguments and extra `const M&` overloads allow  // for supporting bitfield arguments.  template <typename K = key_type, class M>  std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k,                                             const M &obj) {    return insert_or_assign_impl(k, obj);  }  template <typename K = key_type, class M, K * = nullptr>  std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) {    return insert_or_assign_impl(std::forward<K>(k), obj);  }  template <typename K = key_type, class M, M * = nullptr>  std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) {    return insert_or_assign_impl(k, std::forward<M>(obj));  }  template <typename K = key_type, class M, K * = nullptr, M * = nullptr>  std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) {    return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj));  }  template <typename K = key_type, class M>  iterator insert_or_assign(const_iterator hint, const key_arg<K> &k,                            const M &obj) {    return insert_or_assign_hint_impl(hint, k, obj);  }  template <typename K = key_type, class M, K * = nullptr>  iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) {    return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj);  }  template <typename K = key_type, class M, M * = nullptr>  iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) {    return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj));  }  template <typename K = key_type, class M, K * = nullptr, M * = nullptr>  iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) {    return insert_or_assign_hint_impl(hint, std::forward<K>(k),                                      std::forward<M>(obj));  }  template <typename K = key_type, typename... Args,            typename absl::enable_if_t<                !std::is_convertible<K, const_iterator>::value, int> = 0>  std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) {    return try_emplace_impl(k, std::forward<Args>(args)...);  }  template <typename K = key_type, typename... Args,            typename absl::enable_if_t<                !std::is_convertible<K, const_iterator>::value, int> = 0>  std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) {    return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);  }  template <typename K = key_type, typename... Args>  iterator try_emplace(const_iterator hint, const key_arg<K> &k,                       Args &&... args) {    return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...);  }  template <typename K = key_type, typename... Args>  iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) {    return try_emplace_hint_impl(hint, std::forward<K>(k),                                 std::forward<Args>(args)...);  }  template <typename K = key_type>  mapped_type &operator[](const key_arg<K> &k) {    return try_emplace(k).first->second;  }  template <typename K = key_type>  mapped_type &operator[](key_arg<K> &&k) {    return try_emplace(std::forward<K>(k)).first->second;  }  template <typename K = key_type>  mapped_type &at(const key_arg<K> &key) {    auto it = this->find(key);    if (it == this->end())      base_internal::ThrowStdOutOfRange("absl::btree_map::at");    return it->second;  }  template <typename K = key_type>  const mapped_type &at(const key_arg<K> &key) const {    auto it = this->find(key);    if (it == this->end())      base_internal::ThrowStdOutOfRange("absl::btree_map::at");    return it->second;  } private:  // Note: when we call `std::forward<M>(obj)` twice, it's safe because  // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when  // `ret.second` is false.  template <class K, class M>  std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) {    const std::pair<iterator, bool> ret =        this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj));    if (!ret.second) ret.first->second = std::forward<M>(obj);    return ret;  }  template <class K, class M>  iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) {    const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique(        iterator(hint), k, std::forward<K>(k), std::forward<M>(obj));    if (!ret.second) ret.first->second = std::forward<M>(obj);    return ret.first;  }  template <class K, class... Args>  std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) {    return this->tree_.insert_unique(        k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)),        std::forward_as_tuple(std::forward<Args>(args)...));  }  template <class K, class... Args>  iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) {    return this->tree_        .insert_hint_unique(iterator(hint), k, std::piecewise_construct,                            std::forward_as_tuple(std::forward<K>(k)),                            std::forward_as_tuple(std::forward<Args>(args)...))        .first;  }};// A common base class for btree_multiset and btree_multimap.template <typename Tree>class btree_multiset_container : public btree_container<Tree> {  using super_type = btree_container<Tree>;  using params_type = typename Tree::params_type;  using init_type = typename params_type::init_type;  using is_key_compare_to = typename params_type::is_key_compare_to;  template <class K>  using key_arg = typename super_type::template key_arg<K>; public:  using key_type = typename Tree::key_type;  using value_type = typename Tree::value_type;  using size_type = typename Tree::size_type;  using key_compare = typename Tree::key_compare;  using allocator_type = typename Tree::allocator_type;  using iterator = typename Tree::iterator;  using const_iterator = typename Tree::const_iterator;  using node_type = typename super_type::node_type;  // Inherit constructors.  using super_type::super_type;  btree_multiset_container() {}  // Range constructor.  template <class InputIterator>  btree_multiset_container(InputIterator b, InputIterator e,                           const key_compare &comp = key_compare(),                           const allocator_type &alloc = allocator_type())      : super_type(comp, alloc) {    insert(b, e);  }  // Initializer list constructor.  btree_multiset_container(std::initializer_list<init_type> init,                           const key_compare &comp = key_compare(),                           const allocator_type &alloc = allocator_type())      : btree_multiset_container(init.begin(), init.end(), comp, alloc) {}  // Lookup routines.  template <typename K = key_type>  size_type count(const key_arg<K> &key) const {    return this->tree_.count_multi(key);  }  // Insertion routines.  iterator insert(const value_type &v) { return this->tree_.insert_multi(v); }  iterator insert(value_type &&v) {    return this->tree_.insert_multi(std::move(v));  }  iterator insert(const_iterator hint, const value_type &v) {    return this->tree_.insert_hint_multi(iterator(hint), v);  }  iterator insert(const_iterator hint, value_type &&v) {    return this->tree_.insert_hint_multi(iterator(hint), std::move(v));  }  template <typename InputIterator>  void insert(InputIterator b, InputIterator e) {    this->tree_.insert_iterator_multi(b, e);  }  void insert(std::initializer_list<init_type> init) {    this->tree_.insert_iterator_multi(init.begin(), init.end());  }  template <typename... Args>  iterator emplace(Args &&... args) {    return this->tree_.insert_multi(init_type(std::forward<Args>(args)...));  }  template <typename... Args>  iterator emplace_hint(const_iterator hint, Args &&... args) {    return this->tree_.insert_hint_multi(        iterator(hint), init_type(std::forward<Args>(args)...));  }  iterator insert(node_type &&node) {    if (!node) return this->end();    iterator res =        this->tree_.insert_multi(params_type::key(CommonAccess::GetSlot(node)),                                 CommonAccess::GetSlot(node));    CommonAccess::Destroy(&node);    return res;  }  iterator insert(const_iterator hint, node_type &&node) {    if (!node) return this->end();    iterator res = this->tree_.insert_hint_multi(        iterator(hint),        std::move(params_type::element(CommonAccess::GetSlot(node))));    CommonAccess::Destroy(&node);    return res;  }  // Deletion routines.  template <typename K = key_type>  size_type erase(const key_arg<K> &key) {    return this->tree_.erase_multi(key);  }  using super_type::erase;  // Node extraction routines.  template <typename K = key_type>  node_type extract(const key_arg<K> &key) {    auto it = this->find(key);    return it == this->end() ? node_type() : extract(it);  }  using super_type::extract;  // Merge routines.  // Moves all elements from `src` into `this`.  template <      typename T,      typename absl::enable_if_t<          absl::conjunction<              std::is_same<value_type, typename T::value_type>,              std::is_same<allocator_type, typename T::allocator_type>,              std::is_same<typename params_type::is_map_container,                           typename T::params_type::is_map_container>>::value,          int> = 0>  void merge(btree_container<T> &src) {  // NOLINT    insert(std::make_move_iterator(src.begin()),           std::make_move_iterator(src.end()));    src.clear();  }  template <      typename T,      typename absl::enable_if_t<          absl::conjunction<              std::is_same<value_type, typename T::value_type>,              std::is_same<allocator_type, typename T::allocator_type>,              std::is_same<typename params_type::is_map_container,                           typename T::params_type::is_map_container>>::value,          int> = 0>  void merge(btree_container<T> &&src) {    merge(src);  }};// A base class for btree_multimap.template <typename Tree>class btree_multimap_container : public btree_multiset_container<Tree> {  using super_type = btree_multiset_container<Tree>;  using params_type = typename Tree::params_type; public:  using mapped_type = typename params_type::mapped_type;  // Inherit constructors.  using super_type::super_type;  btree_multimap_container() {}};}  // namespace container_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
 |