| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338 | // Copyright 2020 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: cord.h// -----------------------------------------------------------------------------//// This file defines the `absl::Cord` data structure and operations on that data// structure. A Cord is a string-like sequence of characters optimized for// specific use cases. Unlike a `std::string`, which stores an array of// contiguous characters, Cord data is stored in a structure consisting of// separate, reference-counted "chunks." (Currently, this implementation is a// tree structure, though that implementation may change.)//// Because a Cord consists of these chunks, data can be added to or removed from// a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a// `std::string`, a Cord can therefore accomodate data that changes over its// lifetime, though it's not quite "mutable"; it can change only in the// attachment, detachment, or rearrangement of chunks of its constituent data.//// A Cord provides some benefit over `std::string` under the following (albeit// narrow) circumstances:////   * Cord data is designed to grow and shrink over a Cord's lifetime. Cord//     provides efficient insertions and deletions at the start and end of the//     character sequences, avoiding copies in those cases. Static data should//     generally be stored as strings.//   * External memory consisting of string-like data can be directly added to//     a Cord without requiring copies or allocations.//   * Cord data may be shared and copied cheaply. Cord provides a copy-on-write//     implementation and cheap sub-Cord operations. Copying a Cord is an O(1)//     operation.//// As a consequence to the above, Cord data is generally large. Small data// should generally use strings, as construction of a Cord requires some// overhead. Small Cords (<= 15 bytes) are represented inline, but most small// Cords are expected to grow over their lifetimes.//// Note that because a Cord is made up of separate chunked data, random access// to character data within a Cord is slower than within a `std::string`.//// Thread Safety//// Cord has the same thread-safety properties as many other types like// std::string, std::vector<>, int, etc -- it is thread-compatible. In// particular, if threads do not call non-const methods, then it is safe to call// const methods without synchronization. Copying a Cord produces a new instance// that can be used concurrently with the original in arbitrary ways.#ifndef ABSL_STRINGS_CORD_H_#define ABSL_STRINGS_CORD_H_#include <algorithm>#include <cstddef>#include <cstdint>#include <cstring>#include <iosfwd>#include <iterator>#include <string>#include <type_traits>#include "absl/base/internal/endian.h"#include "absl/base/internal/invoke.h"#include "absl/base/internal/per_thread_tls.h"#include "absl/base/macros.h"#include "absl/base/port.h"#include "absl/container/inlined_vector.h"#include "absl/functional/function_ref.h"#include "absl/meta/type_traits.h"#include "absl/strings/internal/cord_internal.h"#include "absl/strings/internal/resize_uninitialized.h"#include "absl/strings/string_view.h"#include "absl/types/optional.h"namespace absl {ABSL_NAMESPACE_BEGINclass Cord;class CordTestPeer;template <typename Releaser>Cord MakeCordFromExternal(absl::string_view, Releaser&&);void CopyCordToString(const Cord& src, std::string* dst);// Cord//// A Cord is a sequence of characters, designed to be more efficient than a// `std::string` in certain circumstances: namely, large string data that needs// to change over its lifetime or shared, especially when such data is shared// across API boundaries.//// A Cord stores its character data in a structure that allows efficient prepend// and append operations. This makes a Cord useful for large string data sent// over in a wire format that may need to be prepended or appended at some point// during the data exchange (e.g. HTTP, protocol buffers). For example, a// Cord is useful for storing an HTTP request, and prepending an HTTP header to// such a request.//// Cords should not be used for storing general string data, however. They// require overhead to construct and are slower than strings for random access.//// The Cord API provides the following common API operations://// * Create or assign Cords out of existing string data, memory, or other Cords// * Append and prepend data to an existing Cord// * Create new Sub-Cords from existing Cord data// * Swap Cord data and compare Cord equality// * Write out Cord data by constructing a `std::string`//// Additionally, the API provides iterator utilities to iterate through Cord// data via chunks or character bytes.//class Cord { private:  template <typename T>  using EnableIfString =      absl::enable_if_t<std::is_same<T, std::string>::value, int>; public:  // Cord::Cord() Constructors  // Creates an empty Cord  constexpr Cord() noexcept;  // Creates a Cord from an existing Cord. Cord is copyable and efficiently  // movable. The moved-from state is valid but unspecified.  Cord(const Cord& src);  Cord(Cord&& src) noexcept;  Cord& operator=(const Cord& x);  Cord& operator=(Cord&& x) noexcept;  // Creates a Cord from a `src` string. This constructor is marked explicit to  // prevent implicit Cord constructions from arguments convertible to an  // `absl::string_view`.  explicit Cord(absl::string_view src);  Cord& operator=(absl::string_view src);  // Creates a Cord from a `std::string&&` rvalue. These constructors are  // templated to avoid ambiguities for types that are convertible to both  // `absl::string_view` and `std::string`, such as `const char*`.  //  // Note that these functions reserve the right to use the `string&&`'s  // memory and that they will do so in the future.  template <typename T, EnableIfString<T> = 0>  explicit Cord(T&& src) : Cord(absl::string_view(src)) {}  template <typename T, EnableIfString<T> = 0>  Cord& operator=(T&& src);  // Cord::~Cord()  //  // Destructs the Cord  ~Cord() {    if (contents_.is_tree()) DestroyCordSlow();  }  // MakeCordFromExternal()  //  // Creates a Cord that takes ownership of external string memory. The  // contents of `data` are not copied to the Cord; instead, the external  // memory is added to the Cord and reference-counted. This data may not be  // changed for the life of the Cord, though it may be prepended or appended  // to.  //  // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when  // the reference count for `data` reaches zero. As noted above, this data must  // remain live until the releaser is invoked. The callable releaser also must:  //  //   * be move constructible  //   * support `void operator()(absl::string_view) const` or `void operator()`  //   * not have alignment requirement greater than what is guaranteed by  //     `::operator new`. This alignment is dictated by  //     `alignof(std::max_align_t)` (pre-C++17 code) or  //     `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code).  //  // Example:  //  // Cord MakeCord(BlockPool* pool) {  //   Block* block = pool->NewBlock();  //   FillBlock(block);  //   return absl::MakeCordFromExternal(  //       block->ToStringView(),  //       [pool, block](absl::string_view v) {  //         pool->FreeBlock(block, v);  //       });  // }  //  // WARNING: Because a Cord can be reference-counted, it's likely a bug if your  // releaser doesn't do anything. For example, consider the following:  //  // void Foo(const char* buffer, int len) {  //   auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),  //                                       [](absl::string_view) {});  //  //   // BUG: If Bar() copies its cord for any reason, including keeping a  //   // substring of it, the lifetime of buffer might be extended beyond  //   // when Foo() returns.  //   Bar(c);  // }  template <typename Releaser>  friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);  // Cord::Clear()  //  // Releases the Cord data. Any nodes that share data with other Cords, if  // applicable, will have their reference counts reduced by 1.  void Clear();  // Cord::Append()  //  // Appends data to the Cord, which may come from another Cord or other string  // data.  void Append(const Cord& src);  void Append(Cord&& src);  void Append(absl::string_view src);  template <typename T, EnableIfString<T> = 0>  void Append(T&& src);  // Cord::Prepend()  //  // Prepends data to the Cord, which may come from another Cord or other string  // data.  void Prepend(const Cord& src);  void Prepend(absl::string_view src);  template <typename T, EnableIfString<T> = 0>  void Prepend(T&& src);  // Cord::RemovePrefix()  //  // Removes the first `n` bytes of a Cord.  void RemovePrefix(size_t n);  void RemoveSuffix(size_t n);  // Cord::Subcord()  //  // Returns a new Cord representing the subrange [pos, pos + new_size) of  // *this. If pos >= size(), the result is empty(). If  // (pos + new_size) >= size(), the result is the subrange [pos, size()).  Cord Subcord(size_t pos, size_t new_size) const;  // Cord::swap()  //  // Swaps the contents of the Cord with `other`.  void swap(Cord& other) noexcept;  // swap()  //  // Swaps the contents of two Cords.  friend void swap(Cord& x, Cord& y) noexcept {    x.swap(y);  }  // Cord::size()  //  // Returns the size of the Cord.  size_t size() const;  // Cord::empty()  //  // Determines whether the given Cord is empty, returning `true` is so.  bool empty() const;  // Cord::EstimatedMemoryUsage()  //  // Returns the *approximate* number of bytes held in full or in part by this  // Cord (which may not remain the same between invocations).  Note that Cords  // that share memory could each be "charged" independently for the same shared  // memory.  size_t EstimatedMemoryUsage() const;  // Cord::Compare()  //  // Compares 'this' Cord with rhs. This function and its relatives treat Cords  // as sequences of unsigned bytes. The comparison is a straightforward  // lexicographic comparison. `Cord::Compare()` returns values as follows:  //  //   -1  'this' Cord is smaller  //    0  two Cords are equal  //    1  'this' Cord is larger  int Compare(absl::string_view rhs) const;  int Compare(const Cord& rhs) const;  // Cord::StartsWith()  //  // Determines whether the Cord starts with the passed string data `rhs`.  bool StartsWith(const Cord& rhs) const;  bool StartsWith(absl::string_view rhs) const;  // Cord::EndsWidth()  //  // Determines whether the Cord ends with the passed string data `rhs`.  bool EndsWith(absl::string_view rhs) const;  bool EndsWith(const Cord& rhs) const;  // Cord::operator std::string()  //  // Converts a Cord into a `std::string()`. This operator is marked explicit to  // prevent unintended Cord usage in functions that take a string.  explicit operator std::string() const;  // CopyCordToString()  //  // Copies the contents of a `src` Cord into a `*dst` string.  //  // This function optimizes the case of reusing the destination string since it  // can reuse previously allocated capacity. However, this function does not  // guarantee that pointers previously returned by `dst->data()` remain valid  // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new  // object, prefer to simply use the conversion operator to `std::string`.  friend void CopyCordToString(const Cord& src, std::string* dst);  class CharIterator;  //----------------------------------------------------------------------------  // Cord::ChunkIterator  //----------------------------------------------------------------------------  //  // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its  // Cord. Such iteration allows you to perform non-const operatons on the data  // of a Cord without modifying it.  //  // Generally, you do not instantiate a `Cord::ChunkIterator` directly;  // instead, you create one implicitly through use of the `Cord::Chunks()`  // member function.  //  // The `Cord::ChunkIterator` has the following properties:  //  //   * The iterator is invalidated after any non-const operation on the  //     Cord object over which it iterates.  //   * The `string_view` returned by dereferencing a valid, non-`end()`  //     iterator is guaranteed to be non-empty.  //   * Two `ChunkIterator` objects can be compared equal if and only if they  //     remain valid and iterate over the same Cord.  //   * The iterator in this case is a proxy iterator; the `string_view`  //     returned by the iterator does not live inside the Cord, and its  //     lifetime is limited to the lifetime of the iterator itself. To help  //     prevent lifetime issues, `ChunkIterator::reference` is not a true  //     reference type and is equivalent to `value_type`.  //   * The iterator keeps state that can grow for Cords that contain many  //     nodes and are imbalanced due to sharing. Prefer to pass this type by  //     const reference instead of by value.  class ChunkIterator {   public:    using iterator_category = std::input_iterator_tag;    using value_type = absl::string_view;    using difference_type = ptrdiff_t;    using pointer = const value_type*;    using reference = value_type;    ChunkIterator() = default;    ChunkIterator& operator++();    ChunkIterator operator++(int);    bool operator==(const ChunkIterator& other) const;    bool operator!=(const ChunkIterator& other) const;    reference operator*() const;    pointer operator->() const;    friend class Cord;    friend class CharIterator;   private:    // Constructs a `begin()` iterator from `cord`.    explicit ChunkIterator(const Cord* cord);    // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than    // `current_chunk_.size()`.    void RemoveChunkPrefix(size_t n);    Cord AdvanceAndReadBytes(size_t n);    void AdvanceBytes(size_t n);    // Iterates `n` bytes, where `n` is expected to be greater than or equal to    // `current_chunk_.size()`.    void AdvanceBytesSlowPath(size_t n);    // A view into bytes of the current `CordRep`. It may only be a view to a    // suffix of bytes if this is being used by `CharIterator`.    absl::string_view current_chunk_;    // The current leaf, or `nullptr` if the iterator points to short data.    // If the current chunk is a substring node, current_leaf_ points to the    // underlying flat or external node.    absl::cord_internal::CordRep* current_leaf_ = nullptr;    // The number of bytes left in the `Cord` over which we are iterating.    size_t bytes_remaining_ = 0;    absl::InlinedVector<absl::cord_internal::CordRep*, 4>        stack_of_right_children_;  };  // Cord::ChunkIterator::chunk_begin()  //  // Returns an iterator to the first chunk of the `Cord`.  //  // Generally, prefer using `Cord::Chunks()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `ChunkIterator` where range-based for-loops are not useful.  //  // Example:  //  //   absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,  //                                         absl::string_view s) {  //     return std::find(c.chunk_begin(), c.chunk_end(), s);  //   }  ChunkIterator chunk_begin() const;  // Cord::ChunkItertator::chunk_end()  //  // Returns an iterator one increment past the last chunk of the `Cord`.  //  // Generally, prefer using `Cord::Chunks()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `ChunkIterator` where range-based for-loops may not be available.  ChunkIterator chunk_end() const;  //----------------------------------------------------------------------------  // Cord::ChunkIterator::ChunkRange  //----------------------------------------------------------------------------  //  // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,  // producing an iterator which can be used within a range-based for loop.  // Construction of a `ChunkRange` will return an iterator pointing to the  // first chunk of the Cord. Generally, do not construct a `ChunkRange`  // directly; instead, prefer to use the `Cord::Chunks()` method.  //  // Implementation note: `ChunkRange` is simply a convenience wrapper over  // `Cord::chunk_begin()` and `Cord::chunk_end()`.  class ChunkRange {   public:    explicit ChunkRange(const Cord* cord) : cord_(cord) {}    ChunkIterator begin() const;    ChunkIterator end() const;   private:    const Cord* cord_;  };  // Cord::Chunks()  //  // Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks  // of a `Cord` with a range-based for-loop. For most iteration tasks on a  // Cord, use `Cord::Chunks()` to retrieve this iterator.  //  // Example:  //  //   void ProcessChunks(const Cord& cord) {  //     for (absl::string_view chunk : cord.Chunks()) { ... }  //   }  //  // Note that the ordinary caveats of temporary lifetime extension apply:  //  //   void Process() {  //     for (absl::string_view chunk : CordFactory().Chunks()) {  //       // The temporary Cord returned by CordFactory has been destroyed!  //     }  //   }  ChunkRange Chunks() const;  //----------------------------------------------------------------------------  // Cord::CharIterator  //----------------------------------------------------------------------------  //  // A `Cord::CharIterator` allows iteration over the constituent characters of  // a `Cord`.  //  // Generally, you do not instantiate a `Cord::CharIterator` directly; instead,  // you create one implicitly through use of the `Cord::Chars()` member  // function.  //  // A `Cord::CharIterator` has the following properties:  //  //   * The iterator is invalidated after any non-const operation on the  //     Cord object over which it iterates.  //   * Two `CharIterator` objects can be compared equal if and only if they  //     remain valid and iterate over the same Cord.  //   * The iterator keeps state that can grow for Cords that contain many  //     nodes and are imbalanced due to sharing. Prefer to pass this type by  //     const reference instead of by value.  //   * This type cannot act as a forward iterator because a `Cord` can reuse  //     sections of memory. This fact violates the requirement for forward  //     iterators to compare equal if dereferencing them returns the same  //     object.  class CharIterator {   public:    using iterator_category = std::input_iterator_tag;    using value_type = char;    using difference_type = ptrdiff_t;    using pointer = const char*;    using reference = const char&;    CharIterator() = default;    CharIterator& operator++();    CharIterator operator++(int);    bool operator==(const CharIterator& other) const;    bool operator!=(const CharIterator& other) const;    reference operator*() const;    pointer operator->() const;    friend Cord;   private:    explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}    ChunkIterator chunk_iterator_;  };  // Cord::CharIterator::AdvanceAndRead()  //  // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes  // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the  // number of bytes within the Cord; otherwise, behavior is undefined. It is  // valid to pass `char_end()` and `0`.  static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);  // Cord::CharIterator::Advance()  //  // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than  // or equal to the number of bytes remaining within the Cord; otherwise,  // behavior is undefined. It is valid to pass `char_end()` and `0`.  static void Advance(CharIterator* it, size_t n_bytes);  // Cord::CharIterator::ChunkRemaining()  //  // Returns the longest contiguous view starting at the iterator's position.  //  // `it` must be dereferenceable.  static absl::string_view ChunkRemaining(const CharIterator& it);  // Cord::CharIterator::char_begin()  //  // Returns an iterator to the first character of the `Cord`.  //  // Generally, prefer using `Cord::Chars()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `CharIterator` where range-based for-loops may not be available.  CharIterator char_begin() const;  // Cord::CharIterator::char_end()  //  // Returns an iterator to one past the last character of the `Cord`.  //  // Generally, prefer using `Cord::Chars()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `CharIterator` where range-based for-loops are not useful.  CharIterator char_end() const;  // Cord::CharIterator::CharRange  //  // `CharRange` is a helper class for iterating over the characters of a  // producing an iterator which can be used within a range-based for loop.  // Construction of a `CharRange` will return an iterator pointing to the first  // character of the Cord. Generally, do not construct a `CharRange` directly;  // instead, prefer to use the `Cord::Chars()` method show below.  //  // Implementation note: `CharRange` is simply a convenience wrapper over  // `Cord::char_begin()` and `Cord::char_end()`.  class CharRange {   public:    explicit CharRange(const Cord* cord) : cord_(cord) {}    CharIterator begin() const;    CharIterator end() const;   private:    const Cord* cord_;  };  // Cord::CharIterator::Chars()  //  // Returns a `Cord::CharIterator` for iterating over the characters of a  // `Cord` with a range-based for-loop. For most character-based iteration  // tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.  //  // Example:  //  //   void ProcessCord(const Cord& cord) {  //     for (char c : cord.Chars()) { ... }  //   }  //  // Note that the ordinary caveats of temporary lifetime extension apply:  //  //   void Process() {  //     for (char c : CordFactory().Chars()) {  //       // The temporary Cord returned by CordFactory has been destroyed!  //     }  //   }  CharRange Chars() const;  // Cord::operator[]  //  // Get the "i"th character of the Cord and returns it, provided that  // 0 <= i < Cord.size().  //  // NOTE: This routine is reasonably efficient. It is roughly  // logarithmic based on the number of chunks that make up the cord. Still,  // if you need to iterate over the contents of a cord, you should  // use a CharIterator/ChunkIterator rather than call operator[] or Get()  // repeatedly in a loop.  char operator[](size_t i) const;  // Cord::TryFlat()  //  // If this cord's representation is a single flat array, return a  // string_view referencing that array.  Otherwise return nullopt.  absl::optional<absl::string_view> TryFlat() const;  // Cord::Flatten()  //  // Flattens the cord into a single array and returns a view of the data.  //  // If the cord was already flat, the contents are not modified.  absl::string_view Flatten();  // Support absl::Cord as a sink object for absl::Format().  friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) {    cord->Append(part);  }  template <typename H>  friend H AbslHashValue(H hash_state, const absl::Cord& c) {    absl::optional<absl::string_view> maybe_flat = c.TryFlat();    if (maybe_flat.has_value()) {      return H::combine(std::move(hash_state), *maybe_flat);    }    return c.HashFragmented(std::move(hash_state));  } private:  friend class CordTestPeer;  friend bool operator==(const Cord& lhs, const Cord& rhs);  friend bool operator==(const Cord& lhs, absl::string_view rhs);  // Call the provided function once for each cord chunk, in order.  Unlike  // Chunks(), this API will not allocate memory.  void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;  // Allocates new contiguous storage for the contents of the cord. This is  // called by Flatten() when the cord was not already flat.  absl::string_view FlattenSlowPath();  // Actual cord contents are hidden inside the following simple  // class so that we can isolate the bulk of cord.cc from changes  // to the representation.  //  // InlineRep holds either a tree pointer, or an array of kMaxInline bytes.  class InlineRep {   public:    static constexpr unsigned char kMaxInline = 15;    static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");    // Tag byte & kMaxInline means we are storing a pointer.    static constexpr unsigned char kTreeFlag = 1 << 4;    // Tag byte & kProfiledFlag means we are profiling the Cord.    static constexpr unsigned char kProfiledFlag = 1 << 5;    constexpr InlineRep() : data_{} {}    InlineRep(const InlineRep& src);    InlineRep(InlineRep&& src);    InlineRep& operator=(const InlineRep& src);    InlineRep& operator=(InlineRep&& src) noexcept;    void Swap(InlineRep* rhs);    bool empty() const;    size_t size() const;    const char* data() const;  // Returns nullptr if holding pointer    void set_data(const char* data, size_t n,                  bool nullify_tail);  // Discards pointer, if any    char* set_data(size_t n);  // Write data to the result    // Returns nullptr if holding bytes    absl::cord_internal::CordRep* tree() const;    // Discards old pointer, if any    void set_tree(absl::cord_internal::CordRep* rep);    // Replaces a tree with a new root. This is faster than set_tree, but it    // should only be used when it's clear that the old rep was a tree.    void replace_tree(absl::cord_internal::CordRep* rep);    // Returns non-null iff was holding a pointer    absl::cord_internal::CordRep* clear();    // Convert to pointer if necessary    absl::cord_internal::CordRep* force_tree(size_t extra_hint);    void reduce_size(size_t n);  // REQUIRES: holding data    void remove_prefix(size_t n);  // REQUIRES: holding data    void AppendArray(const char* src_data, size_t src_size);    absl::string_view FindFlatStartPiece() const;    void AppendTree(absl::cord_internal::CordRep* tree);    void PrependTree(absl::cord_internal::CordRep* tree);    void GetAppendRegion(char** region, size_t* size, size_t max_length);    void GetAppendRegion(char** region, size_t* size);    bool IsSame(const InlineRep& other) const {      return memcmp(data_, other.data_, sizeof(data_)) == 0;    }    int BitwiseCompare(const InlineRep& other) const {      uint64_t x, y;      // Use memcpy to avoid anti-aliasing issues.      memcpy(&x, data_, sizeof(x));      memcpy(&y, other.data_, sizeof(y));      if (x == y) {        memcpy(&x, data_ + 8, sizeof(x));        memcpy(&y, other.data_ + 8, sizeof(y));        if (x == y) return 0;      }      return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)                 ? -1                 : 1;    }    void CopyTo(std::string* dst) const {      // memcpy is much faster when operating on a known size. On most supported      // platforms, the small string optimization is large enough that resizing      // to 15 bytes does not cause a memory allocation.      absl::strings_internal::STLStringResizeUninitialized(dst,                                                           sizeof(data_) - 1);      memcpy(&(*dst)[0], data_, sizeof(data_) - 1);      // erase is faster than resize because the logic for memory allocation is      // not needed.      dst->erase(data_[kMaxInline]);    }    // Copies the inline contents into `dst`. Assumes the cord is not empty.    void CopyToArray(char* dst) const;    bool is_tree() const { return data_[kMaxInline] > kMaxInline; }   private:    friend class Cord;    void AssignSlow(const InlineRep& src);    // Unrefs the tree, stops profiling, and zeroes the contents    void ClearSlow();    // If the data has length <= kMaxInline, we store it in data_[0..len-1],    // and store the length in data_[kMaxInline].  Else we store it in a tree    // and store a pointer to that tree in data_[0..sizeof(CordRep*)-1].    alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1];  };  InlineRep contents_;  // Helper for MemoryUsage()  static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);  // Helper for GetFlat() and TryFlat()  static bool GetFlatAux(absl::cord_internal::CordRep* rep,                         absl::string_view* fragment);  // Helper for ForEachChunk()  static void ForEachChunkAux(      absl::cord_internal::CordRep* rep,      absl::FunctionRef<void(absl::string_view)> callback);  // The destructor for non-empty Cords.  void DestroyCordSlow();  // Out-of-line implementation of slower parts of logic.  void CopyToArraySlowPath(char* dst) const;  int CompareSlowPath(absl::string_view rhs, size_t compared_size,                      size_t size_to_compare) const;  int CompareSlowPath(const Cord& rhs, size_t compared_size,                      size_t size_to_compare) const;  bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;  bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;  int CompareImpl(const Cord& rhs) const;  template <typename ResultType, typename RHS>  friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,                                   size_t size_to_compare);  static absl::string_view GetFirstChunk(const Cord& c);  static absl::string_view GetFirstChunk(absl::string_view sv);  // Returns a new reference to contents_.tree(), or steals an existing  // reference if called on an rvalue.  absl::cord_internal::CordRep* TakeRep() const&;  absl::cord_internal::CordRep* TakeRep() &&;  // Helper for Append()  template <typename C>  void AppendImpl(C&& src);  // Helper for AbslHashValue()  template <typename H>  H HashFragmented(H hash_state) const {    typename H::AbslInternalPiecewiseCombiner combiner;    ForEachChunk([&combiner, &hash_state](absl::string_view chunk) {      hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(),                                       chunk.size());    });    return H::combine(combiner.finalize(std::move(hash_state)), size());  }};ABSL_NAMESPACE_END}  // namespace abslnamespace absl {ABSL_NAMESPACE_BEGIN// allow a Cord to be loggedextern std::ostream& operator<<(std::ostream& out, const Cord& cord);// ------------------------------------------------------------------// Internal details follow.  Clients should ignore.namespace cord_internal {// Fast implementation of memmove for up to 15 bytes. This implementation is// safe for overlapping regions. If nullify_tail is true, the destination is// padded with '\0' up to 16 bytes.inline void SmallMemmove(char* dst, const char* src, size_t n,                         bool nullify_tail = false) {  if (n >= 8) {    assert(n <= 16);    uint64_t buf1;    uint64_t buf2;    memcpy(&buf1, src, 8);    memcpy(&buf2, src + n - 8, 8);    if (nullify_tail) {      memset(dst + 8, 0, 8);    }    memcpy(dst, &buf1, 8);    memcpy(dst + n - 8, &buf2, 8);  } else if (n >= 4) {    uint32_t buf1;    uint32_t buf2;    memcpy(&buf1, src, 4);    memcpy(&buf2, src + n - 4, 4);    if (nullify_tail) {      memset(dst + 4, 0, 4);      memset(dst + 8, 0, 8);    }    memcpy(dst, &buf1, 4);    memcpy(dst + n - 4, &buf2, 4);  } else {    if (n != 0) {      dst[0] = src[0];      dst[n / 2] = src[n / 2];      dst[n - 1] = src[n - 1];    }    if (nullify_tail) {      memset(dst + 8, 0, 8);      memset(dst + n, 0, 8);    }  }}struct ExternalRepReleaserPair {  CordRep* rep;  void* releaser_address;};// Allocates a new external `CordRep` and returns a pointer to it and a pointer// to `releaser_size` bytes where the desired releaser can be constructed.// Expects `data` to be non-empty.ExternalRepReleaserPair NewExternalWithUninitializedReleaser(    absl::string_view data, ExternalReleaserInvoker invoker,    size_t releaser_size);struct Rank1 {};struct Rank0 : Rank1 {};template <typename Releaser, typename = ::absl::base_internal::InvokeT<                                 Releaser, absl::string_view>>void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {  ::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);}template <typename Releaser,          typename = ::absl::base_internal::InvokeT<Releaser>>void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {  ::absl::base_internal::Invoke(std::forward<Releaser>(releaser));}// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer// to it, or `nullptr` if `data` was empty.template <typename Releaser>// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {  static_assert(#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)      alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__,#else      alignof(Releaser) <= alignof(max_align_t),#endif      "Releasers with alignment requirement greater than what is returned by "      "default `::operator new()` are not supported.");  using ReleaserType = absl::decay_t<Releaser>;  if (data.empty()) {    // Never create empty external nodes.    InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),                   data);    return nullptr;  }  auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {    auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);    InvokeReleaser(Rank0{}, std::move(*my_releaser), d);    my_releaser->~ReleaserType();    return sizeof(Releaser);  };  ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser(      data, releaser_invoker, sizeof(releaser));  ::new (external.releaser_address)      ReleaserType(std::forward<Releaser>(releaser));  return external.rep;}// Overload for function reference types that dispatches using a function// pointer because there are no `alignof()` or `sizeof()` a function reference.// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.inline CordRep* NewExternalRep(absl::string_view data,                               void (&releaser)(absl::string_view)) {  return NewExternalRep(data, &releaser);}}  // namespace cord_internaltemplate <typename Releaser>Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {  Cord cord;  cord.contents_.set_tree(::absl::cord_internal::NewExternalRep(      data, std::forward<Releaser>(releaser)));  return cord;}inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {  cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));}inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {  memcpy(data_, src.data_, sizeof(data_));  memset(src.data_, 0, sizeof(data_));}inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {  if (this == &src) {    return *this;  }  if (!is_tree() && !src.is_tree()) {    cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));    return *this;  }  AssignSlow(src);  return *this;}inline Cord::InlineRep& Cord::InlineRep::operator=(    Cord::InlineRep&& src) noexcept {  if (is_tree()) {    ClearSlow();  }  memcpy(data_, src.data_, sizeof(data_));  memset(src.data_, 0, sizeof(data_));  return *this;}inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {  if (rhs == this) {    return;  }  Cord::InlineRep tmp;  cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_));  cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_));  cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_));}inline const char* Cord::InlineRep::data() const {  return is_tree() ? nullptr : data_;}inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {  if (is_tree()) {    absl::cord_internal::CordRep* rep;    memcpy(&rep, data_, sizeof(rep));    return rep;  } else {    return nullptr;  }}inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; }inline size_t Cord::InlineRep::size() const {  const char tag = data_[kMaxInline];  if (tag <= kMaxInline) return tag;  return static_cast<size_t>(tree()->length);}inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {  if (rep == nullptr) {    memset(data_, 0, sizeof(data_));  } else {    bool was_tree = is_tree();    memcpy(data_, &rep, sizeof(rep));    memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);    if (!was_tree) {      data_[kMaxInline] = kTreeFlag;    }  }}inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {  ABSL_ASSERT(is_tree());  if (ABSL_PREDICT_FALSE(rep == nullptr)) {    set_tree(rep);    return;  }  memcpy(data_, &rep, sizeof(rep));  memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);}inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {  const char tag = data_[kMaxInline];  absl::cord_internal::CordRep* result = nullptr;  if (tag > kMaxInline) {    memcpy(&result, data_, sizeof(result));  }  memset(data_, 0, sizeof(data_));  // Clear the cord  return result;}inline void Cord::InlineRep::CopyToArray(char* dst) const {  assert(!is_tree());  size_t n = data_[kMaxInline];  assert(n != 0);  cord_internal::SmallMemmove(dst, data_, n);}constexpr inline Cord::Cord() noexcept {}inline Cord& Cord::operator=(const Cord& x) {  contents_ = x.contents_;  return *this;}inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}inline void Cord::swap(Cord& other) noexcept {  contents_.Swap(&other.contents_);}inline Cord& Cord::operator=(Cord&& x) noexcept {  contents_ = std::move(x.contents_);  return *this;}template <typename T, Cord::EnableIfString<T>>inline Cord& Cord::operator=(T&& src) {  *this = absl::string_view(src);  return *this;}inline size_t Cord::size() const {  // Length is 1st field in str.rep_  return contents_.size();}inline bool Cord::empty() const { return contents_.empty(); }inline size_t Cord::EstimatedMemoryUsage() const {  size_t result = sizeof(Cord);  if (const absl::cord_internal::CordRep* rep = contents_.tree()) {    result += MemoryUsageAux(rep);  }  return result;}inline absl::optional<absl::string_view> Cord::TryFlat() const {  absl::cord_internal::CordRep* rep = contents_.tree();  if (rep == nullptr) {    return absl::string_view(contents_.data(), contents_.size());  }  absl::string_view fragment;  if (GetFlatAux(rep, &fragment)) {    return fragment;  }  return absl::nullopt;}inline absl::string_view Cord::Flatten() {  absl::cord_internal::CordRep* rep = contents_.tree();  if (rep == nullptr) {    return absl::string_view(contents_.data(), contents_.size());  } else {    absl::string_view already_flat_contents;    if (GetFlatAux(rep, &already_flat_contents)) {      return already_flat_contents;    }  }  return FlattenSlowPath();}inline void Cord::Append(absl::string_view src) {  contents_.AppendArray(src.data(), src.size());}template <typename T, Cord::EnableIfString<T>>inline void Cord::Append(T&& src) {  // Note that this function reserves the right to reuse the `string&&`'s  // memory and that it will do so in the future.  Append(absl::string_view(src));}template <typename T, Cord::EnableIfString<T>>inline void Cord::Prepend(T&& src) {  // Note that this function reserves the right to reuse the `string&&`'s  // memory and that it will do so in the future.  Prepend(absl::string_view(src));}inline int Cord::Compare(const Cord& rhs) const {  if (!contents_.is_tree() && !rhs.contents_.is_tree()) {    return contents_.BitwiseCompare(rhs.contents_);  }  return CompareImpl(rhs);}// Does 'this' cord start/end with rhsinline bool Cord::StartsWith(const Cord& rhs) const {  if (contents_.IsSame(rhs.contents_)) return true;  size_t rhs_size = rhs.size();  if (size() < rhs_size) return false;  return EqualsImpl(rhs, rhs_size);}inline bool Cord::StartsWith(absl::string_view rhs) const {  size_t rhs_size = rhs.size();  if (size() < rhs_size) return false;  return EqualsImpl(rhs, rhs_size);}inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)    : bytes_remaining_(cord->size()) {  if (cord->empty()) return;  if (cord->contents_.is_tree()) {    stack_of_right_children_.push_back(cord->contents_.tree());    operator++();  } else {    current_chunk_ = absl::string_view(cord->contents_.data(), cord->size());  }}inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {  ChunkIterator tmp(*this);  operator++();  return tmp;}inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {  return bytes_remaining_ == other.bytes_remaining_;}inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {  return !(*this == other);}inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {  ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);  return current_chunk_;}inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {  ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);  return ¤t_chunk_;}inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {  assert(n < current_chunk_.size());  current_chunk_.remove_prefix(n);  bytes_remaining_ -= n;}inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {  if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {    RemoveChunkPrefix(n);  } else if (n != 0) {    AdvanceBytesSlowPath(n);  }}inline Cord::ChunkIterator Cord::chunk_begin() const {  return ChunkIterator(this);}inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }inline Cord::ChunkIterator Cord::ChunkRange::begin() const {  return cord_->chunk_begin();}inline Cord::ChunkIterator Cord::ChunkRange::end() const {  return cord_->chunk_end();}inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }inline Cord::CharIterator& Cord::CharIterator::operator++() {  if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {    chunk_iterator_.RemoveChunkPrefix(1);  } else {    ++chunk_iterator_;  }  return *this;}inline Cord::CharIterator Cord::CharIterator::operator++(int) {  CharIterator tmp(*this);  operator++();  return tmp;}inline bool Cord::CharIterator::operator==(const CharIterator& other) const {  return chunk_iterator_ == other.chunk_iterator_;}inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {  return !(*this == other);}inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {  return *chunk_iterator_->data();}inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {  return chunk_iterator_->data();}inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {  assert(it != nullptr);  return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);}inline void Cord::Advance(CharIterator* it, size_t n_bytes) {  assert(it != nullptr);  it->chunk_iterator_.AdvanceBytes(n_bytes);}inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {  return *it.chunk_iterator_;}inline Cord::CharIterator Cord::char_begin() const {  return CharIterator(this);}inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }inline Cord::CharIterator Cord::CharRange::begin() const {  return cord_->char_begin();}inline Cord::CharIterator Cord::CharRange::end() const {  return cord_->char_end();}inline Cord::CharRange Cord::Chars() const { return CharRange(this); }inline void Cord::ForEachChunk(    absl::FunctionRef<void(absl::string_view)> callback) const {  absl::cord_internal::CordRep* rep = contents_.tree();  if (rep == nullptr) {    callback(absl::string_view(contents_.data(), contents_.size()));  } else {    return ForEachChunkAux(rep, callback);  }}// Nonmember Cord-to-Cord relational operarators.inline bool operator==(const Cord& lhs, const Cord& rhs) {  if (lhs.contents_.IsSame(rhs.contents_)) return true;  size_t rhs_size = rhs.size();  if (lhs.size() != rhs_size) return false;  return lhs.EqualsImpl(rhs, rhs_size);}inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }inline bool operator<(const Cord& x, const Cord& y) {  return x.Compare(y) < 0;}inline bool operator>(const Cord& x, const Cord& y) {  return x.Compare(y) > 0;}inline bool operator<=(const Cord& x, const Cord& y) {  return x.Compare(y) <= 0;}inline bool operator>=(const Cord& x, const Cord& y) {  return x.Compare(y) >= 0;}// Nonmember Cord-to-absl::string_view relational operators.//// Due to implicit conversions, these also enable comparisons of Cord with// with std::string, ::string, and const char*.inline bool operator==(const Cord& lhs, absl::string_view rhs) {  size_t lhs_size = lhs.size();  size_t rhs_size = rhs.size();  if (lhs_size != rhs_size) return false;  return lhs.EqualsImpl(rhs, rhs_size);}inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }inline bool operator<(const Cord& x, absl::string_view y) {  return x.Compare(y) < 0;}inline bool operator<(absl::string_view x, const Cord& y) {  return y.Compare(x) > 0;}inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }// Some internals exposed to test code.namespace strings_internal {class CordTestAccess { public:  static size_t FlatOverhead();  static size_t MaxFlatLength();  static size_t SizeofCordRepConcat();  static size_t SizeofCordRepExternal();  static size_t SizeofCordRepSubstring();  static size_t FlatTagToLength(uint8_t tag);  static uint8_t LengthToTag(size_t s);};}  // namespace strings_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_STRINGS_CORD_H_
 |