| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: btree_map.h// -----------------------------------------------------------------------------//// This header file defines B-tree maps: sorted associative containers mapping// keys to values.////     * `absl::btree_map<>`//     * `absl::btree_multimap<>`//// These B-tree types are similar to the corresponding types in the STL// (`std::map` and `std::multimap`) and generally conform to the STL interfaces// of those types. However, because they are implemented using B-trees, they// are more efficient in most situations.//// Unlike `std::map` and `std::multimap`, which are commonly implemented using// red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold// multiple values per node. Holding multiple values per node often makes// B-tree maps perform better than their `std::map` counterparts, because// multiple entries can be checked within the same cache hit.//// However, these types should not be considered drop-in replacements for// `std::map` and `std::multimap` as there are some API differences, which are// noted in this header file.//// Importantly, insertions and deletions may invalidate outstanding iterators,// pointers, and references to elements. Such invalidations are typically only// an issue if insertion and deletion operations are interleaved with the use of// more than one iterator, pointer, or reference simultaneously. For this// reason, `insert()` and `erase()` return a valid iterator at the current// position.#ifndef ABSL_CONTAINER_BTREE_MAP_H_#define ABSL_CONTAINER_BTREE_MAP_H_#include "absl/container/internal/btree.h"  // IWYU pragma: export#include "absl/container/internal/btree_container.h"  // IWYU pragma: exportnamespace absl {ABSL_NAMESPACE_BEGIN// absl::btree_map<>//// An `absl::btree_map<K, V>` is an ordered associative container of// unique keys and associated values designed to be a more efficient replacement// for `std::map` (in most cases).//// Keys are sorted using an (optional) comparison function, which defaults to// `std::less<K>`.//// An `absl::btree_map<K, V>` uses a default allocator of// `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)// nodes, and construct and destruct values within those nodes. You may// instead specify a custom allocator `A` (which in turn requires specifying a// custom comparator `C`) as in `absl::btree_map<K, V, C, A>`.//template <typename Key, typename Value, typename Compare = std::less<Key>,          typename Alloc = std::allocator<std::pair<const Key, Value>>>class btree_map    : public container_internal::btree_map_container<          container_internal::btree<container_internal::map_params<              Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,              /*Multi=*/false>>> {  using Base = typename btree_map::btree_map_container; public:  // Constructors and Assignment Operators  //  // A `btree_map` supports the same overload set as `std::map`  // for construction and assignment:  //  // * Default constructor  //  //   absl::btree_map<int, std::string> map1;  //  // * Initializer List constructor  //  //   absl::btree_map<int, std::string> map2 =  //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};  //  // * Copy constructor  //  //   absl::btree_map<int, std::string> map3(map2);  //  // * Copy assignment operator  //  //  absl::btree_map<int, std::string> map4;  //  map4 = map3;  //  // * Move constructor  //  //   // Move is guaranteed efficient  //   absl::btree_map<int, std::string> map5(std::move(map4));  //  // * Move assignment operator  //  //   // May be efficient if allocators are compatible  //   absl::btree_map<int, std::string> map6;  //   map6 = std::move(map5);  //  // * Range constructor  //  //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};  //   absl::btree_map<int, std::string> map7(v.begin(), v.end());  btree_map() {}  using Base::Base;  // btree_map::begin()  //  // Returns an iterator to the beginning of the `btree_map`.  using Base::begin;  // btree_map::cbegin()  //  // Returns a const iterator to the beginning of the `btree_map`.  using Base::cbegin;  // btree_map::end()  //  // Returns an iterator to the end of the `btree_map`.  using Base::end;  // btree_map::cend()  //  // Returns a const iterator to the end of the `btree_map`.  using Base::cend;  // btree_map::empty()  //  // Returns whether or not the `btree_map` is empty.  using Base::empty;  // btree_map::max_size()  //  // Returns the largest theoretical possible number of elements within a  // `btree_map` under current memory constraints. This value can be thought  // of as the largest value of `std::distance(begin(), end())` for a  // `btree_map<Key, T>`.  using Base::max_size;  // btree_map::size()  //  // Returns the number of elements currently within the `btree_map`.  using Base::size;  // btree_map::clear()  //  // Removes all elements from the `btree_map`. Invalidates any references,  // pointers, or iterators referring to contained elements.  using Base::clear;  // btree_map::erase()  //  // Erases elements within the `btree_map`. If an erase occurs, any references,  // pointers, or iterators are invalidated.  // Overloads are listed below.  //  // iterator erase(iterator position):  // iterator erase(const_iterator position):  //  //   Erases the element at `position` of the `btree_map`, returning  //   the iterator pointing to the element after the one that was erased  //   (or end() if none exists).  //  // iterator erase(const_iterator first, const_iterator last):  //  //   Erases the elements in the open interval [`first`, `last`), returning  //   the iterator pointing to the element after the interval that was erased  //   (or end() if none exists).  //  // template <typename K> size_type erase(const K& key):  //  //   Erases the element with the matching key, if it exists, returning the  //   number of elements erased.  using Base::erase;  // btree_map::insert()  //  // Inserts an element of the specified value into the `btree_map`,  // returning an iterator pointing to the newly inserted element, provided that  // an element with the given key does not already exist. If an insertion  // occurs, any references, pointers, or iterators are invalidated.  // Overloads are listed below.  //  // std::pair<iterator,bool> insert(const value_type& value):  //  //   Inserts a value into the `btree_map`. Returns a pair consisting of an  //   iterator to the inserted element (or to the element that prevented the  //   insertion) and a bool denoting whether the insertion took place.  //  // std::pair<iterator,bool> insert(value_type&& value):  //  //   Inserts a moveable value into the `btree_map`. Returns a pair  //   consisting of an iterator to the inserted element (or to the element that  //   prevented the insertion) and a bool denoting whether the insertion took  //   place.  //  // iterator insert(const_iterator hint, const value_type& value):  // iterator insert(const_iterator hint, value_type&& value):  //  //   Inserts a value, using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search. Returns an iterator to the  //   inserted element, or to the existing element that prevented the  //   insertion.  //  // void insert(InputIterator first, InputIterator last):  //  //   Inserts a range of values [`first`, `last`).  //  // void insert(std::initializer_list<init_type> ilist):  //  //   Inserts the elements within the initializer list `ilist`.  using Base::insert;  // btree_map::insert_or_assign()  //  // Inserts an element of the specified value into the `btree_map` provided  // that a value with the given key does not already exist, or replaces the  // corresponding mapped type with the forwarded `obj` argument if a key for  // that value already exists, returning an iterator pointing to the newly  // inserted element. Overloads are listed below.  //  // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj):  // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj):  //  //   Inserts/Assigns (or moves) the element of the specified key into the  //   `btree_map`. If the returned bool is true, insertion took place, and if  //   it's false, assignment took place.  //  // iterator insert_or_assign(const_iterator hint,  //                           const key_type& k, M&& obj):  // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj):  //  //   Inserts/Assigns (or moves) the element of the specified key into the  //   `btree_map` using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search.  using Base::insert_or_assign;  // btree_map::emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_map`, provided that no element with the given key  // already exists.  //  // The element may be constructed even if there already is an element with the  // key in the container, in which case the newly constructed element will be  // destroyed immediately. Prefer `try_emplace()` unless your key is not  // copyable or moveable.  //  // If an insertion occurs, any references, pointers, or iterators are  // invalidated.  using Base::emplace;  // btree_map::emplace_hint()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_map`, using the position of `hint` as a non-binding  // suggestion for where to begin the insertion search, and only inserts  // provided that no element with the given key already exists.  //  // The element may be constructed even if there already is an element with the  // key in the container, in which case the newly constructed element will be  // destroyed immediately. Prefer `try_emplace()` unless your key is not  // copyable or moveable.  //  // If an insertion occurs, any references, pointers, or iterators are  // invalidated.  using Base::emplace_hint;  // btree_map::try_emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_map`, provided that no element with the given key  // already exists. Unlike `emplace()`, if an element with the given key  // already exists, we guarantee that no element is constructed.  //  // If an insertion occurs, any references, pointers, or iterators are  // invalidated.  //  // Overloads are listed below.  //  //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):  //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):  //  // Inserts (via copy or move) the element of the specified key into the  // `btree_map`.  //  //   iterator try_emplace(const_iterator hint,  //                        const key_type& k, Args&&... args):  //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):  //  // Inserts (via copy or move) the element of the specified key into the  // `btree_map` using the position of `hint` as a non-binding suggestion  // for where to begin the insertion search.  using Base::try_emplace;  // btree_map::extract()  //  // Extracts the indicated element, erasing it in the process, and returns it  // as a C++17-compatible node handle. Overloads are listed below.  //  // node_type extract(const_iterator position):  //  //   Extracts the element at the indicated position and returns a node handle  //   owning that extracted data.  //  // template <typename K> node_type extract(const K& k):  //  //   Extracts the element with the key matching the passed key value and  //   returns a node handle owning that extracted data. If the `btree_map`  //   does not contain an element with a matching key, this function returns an  //   empty node handle.  //  // NOTE: In this context, `node_type` refers to the C++17 concept of a  // move-only type that owns and provides access to the elements in associative  // containers (https://en.cppreference.com/w/cpp/container/node_handle).  // It does NOT refer to the data layout of the underlying btree.  using Base::extract;  // btree_map::merge()  //  // Extracts elements from a given `source` btree_map into this  // `btree_map`. If the destination `btree_map` already contains an  // element with an equivalent key, that element is not extracted.  using Base::merge;  // btree_map::swap(btree_map& other)  //  // Exchanges the contents of this `btree_map` with those of the `other`  // btree_map, avoiding invocation of any move, copy, or swap operations on  // individual elements.  //  // All iterators and references on the `btree_map` remain valid, excepting  // for the past-the-end iterator, which is invalidated.  using Base::swap;  // btree_map::at()  //  // Returns a reference to the mapped value of the element with key equivalent  // to the passed key.  using Base::at;  // btree_map::contains()  //  // template <typename K> bool contains(const K& key) const:  //  // Determines whether an element comparing equal to the given `key` exists  // within the `btree_map`, returning `true` if so or `false` otherwise.  //  // Supports heterogeneous lookup, provided that the map is provided a  // compatible heterogeneous comparator.  using Base::contains;  // btree_map::count()  //  // template <typename K> size_type count(const K& key) const:  //  // Returns the number of elements comparing equal to the given `key` within  // the `btree_map`. Note that this function will return either `1` or `0`  // since duplicate elements are not allowed within a `btree_map`.  //  // Supports heterogeneous lookup, provided that the map is provided a  // compatible heterogeneous comparator.  using Base::count;  // btree_map::equal_range()  //  // Returns a closed range [first, last], defined by a `std::pair` of two  // iterators, containing all elements with the passed key in the  // `btree_map`.  using Base::equal_range;  // btree_map::find()  //  // template <typename K> iterator find(const K& key):  // template <typename K> const_iterator find(const K& key) const:  //  // Finds an element with the passed `key` within the `btree_map`.  //  // Supports heterogeneous lookup, provided that the map is provided a  // compatible heterogeneous comparator.  using Base::find;  // btree_map::operator[]()  //  // Returns a reference to the value mapped to the passed key within the  // `btree_map`, performing an `insert()` if the key does not already  // exist.  //  // If an insertion occurs, any references, pointers, or iterators are  // invalidated. Otherwise iterators are not affected and references are not  // invalidated. Overloads are listed below.  //  // T& operator[](key_type&& key):  // T& operator[](const key_type& key):  //  //   Inserts a value_type object constructed in-place if the element with the  //   given key does not exist.  using Base::operator[];  // btree_map::get_allocator()  //  // Returns the allocator function associated with this `btree_map`.  using Base::get_allocator;  // btree_map::key_comp();  //  // Returns the key comparator associated with this `btree_map`.  using Base::key_comp;  // btree_map::value_comp();  //  // Returns the value comparator associated with this `btree_map`.  using Base::value_comp;};// absl::swap(absl::btree_map<>, absl::btree_map<>)//// Swaps the contents of two `absl::btree_map` containers.template <typename K, typename V, typename C, typename A>void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) {  return x.swap(y);}// absl::erase_if(absl::btree_map<>, Pred)//// Erases all elements that satisfy the predicate pred from the container.template <typename K, typename V, typename C, typename A, typename Pred>void erase_if(btree_map<K, V, C, A> &map, Pred pred) {  for (auto it = map.begin(); it != map.end();) {    if (pred(*it)) {      it = map.erase(it);    } else {      ++it;    }  }}// absl::btree_multimap//// An `absl::btree_multimap<K, V>` is an ordered associative container of// keys and associated values designed to be a more efficient replacement for// `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap// allows multiple elements with equivalent keys.//// Keys are sorted using an (optional) comparison function, which defaults to// `std::less<K>`.//// An `absl::btree_multimap<K, V>` uses a default allocator of// `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)// nodes, and construct and destruct values within those nodes. You may// instead specify a custom allocator `A` (which in turn requires specifying a// custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`.//template <typename Key, typename Value, typename Compare = std::less<Key>,          typename Alloc = std::allocator<std::pair<const Key, Value>>>class btree_multimap    : public container_internal::btree_multimap_container<          container_internal::btree<container_internal::map_params<              Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,              /*Multi=*/true>>> {  using Base = typename btree_multimap::btree_multimap_container; public:  // Constructors and Assignment Operators  //  // A `btree_multimap` supports the same overload set as `std::multimap`  // for construction and assignment:  //  // * Default constructor  //  //   absl::btree_multimap<int, std::string> map1;  //  // * Initializer List constructor  //  //   absl::btree_multimap<int, std::string> map2 =  //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};  //  // * Copy constructor  //  //   absl::btree_multimap<int, std::string> map3(map2);  //  // * Copy assignment operator  //  //  absl::btree_multimap<int, std::string> map4;  //  map4 = map3;  //  // * Move constructor  //  //   // Move is guaranteed efficient  //   absl::btree_multimap<int, std::string> map5(std::move(map4));  //  // * Move assignment operator  //  //   // May be efficient if allocators are compatible  //   absl::btree_multimap<int, std::string> map6;  //   map6 = std::move(map5);  //  // * Range constructor  //  //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};  //   absl::btree_multimap<int, std::string> map7(v.begin(), v.end());  btree_multimap() {}  using Base::Base;  // btree_multimap::begin()  //  // Returns an iterator to the beginning of the `btree_multimap`.  using Base::begin;  // btree_multimap::cbegin()  //  // Returns a const iterator to the beginning of the `btree_multimap`.  using Base::cbegin;  // btree_multimap::end()  //  // Returns an iterator to the end of the `btree_multimap`.  using Base::end;  // btree_multimap::cend()  //  // Returns a const iterator to the end of the `btree_multimap`.  using Base::cend;  // btree_multimap::empty()  //  // Returns whether or not the `btree_multimap` is empty.  using Base::empty;  // btree_multimap::max_size()  //  // Returns the largest theoretical possible number of elements within a  // `btree_multimap` under current memory constraints. This value can be  // thought of as the largest value of `std::distance(begin(), end())` for a  // `btree_multimap<Key, T>`.  using Base::max_size;  // btree_multimap::size()  //  // Returns the number of elements currently within the `btree_multimap`.  using Base::size;  // btree_multimap::clear()  //  // Removes all elements from the `btree_multimap`. Invalidates any references,  // pointers, or iterators referring to contained elements.  using Base::clear;  // btree_multimap::erase()  //  // Erases elements within the `btree_multimap`. If an erase occurs, any  // references, pointers, or iterators are invalidated.  // Overloads are listed below.  //  // iterator erase(iterator position):  // iterator erase(const_iterator position):  //  //   Erases the element at `position` of the `btree_multimap`, returning  //   the iterator pointing to the element after the one that was erased  //   (or end() if none exists).  //  // iterator erase(const_iterator first, const_iterator last):  //  //   Erases the elements in the open interval [`first`, `last`), returning  //   the iterator pointing to the element after the interval that was erased  //   (or end() if none exists).  //  // template <typename K> size_type erase(const K& key):  //  //   Erases the elements matching the key, if any exist, returning the  //   number of elements erased.  using Base::erase;  // btree_multimap::insert()  //  // Inserts an element of the specified value into the `btree_multimap`,  // returning an iterator pointing to the newly inserted element.  // Any references, pointers, or iterators are invalidated.  Overloads are  // listed below.  //  // iterator insert(const value_type& value):  //  //   Inserts a value into the `btree_multimap`, returning an iterator to the  //   inserted element.  //  // iterator insert(value_type&& value):  //  //   Inserts a moveable value into the `btree_multimap`, returning an iterator  //   to the inserted element.  //  // iterator insert(const_iterator hint, const value_type& value):  // iterator insert(const_iterator hint, value_type&& value):  //  //   Inserts a value, using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search. Returns an iterator to the  //   inserted element.  //  // void insert(InputIterator first, InputIterator last):  //  //   Inserts a range of values [`first`, `last`).  //  // void insert(std::initializer_list<init_type> ilist):  //  //   Inserts the elements within the initializer list `ilist`.  using Base::insert;  // btree_multimap::emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_multimap`. Any references, pointers, or iterators are  // invalidated.  using Base::emplace;  // btree_multimap::emplace_hint()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_multimap`, using the position of `hint` as a non-binding  // suggestion for where to begin the insertion search.  //  // Any references, pointers, or iterators are invalidated.  using Base::emplace_hint;  // btree_multimap::extract()  //  // Extracts the indicated element, erasing it in the process, and returns it  // as a C++17-compatible node handle. Overloads are listed below.  //  // node_type extract(const_iterator position):  //  //   Extracts the element at the indicated position and returns a node handle  //   owning that extracted data.  //  // template <typename K> node_type extract(const K& k):  //  //   Extracts the element with the key matching the passed key value and  //   returns a node handle owning that extracted data. If the `btree_multimap`  //   does not contain an element with a matching key, this function returns an  //   empty node handle.  //  // NOTE: In this context, `node_type` refers to the C++17 concept of a  // move-only type that owns and provides access to the elements in associative  // containers (https://en.cppreference.com/w/cpp/container/node_handle).  // It does NOT refer to the data layout of the underlying btree.  using Base::extract;  // btree_multimap::merge()  //  // Extracts elements from a given `source` btree_multimap into this  // `btree_multimap`. If the destination `btree_multimap` already contains an  // element with an equivalent key, that element is not extracted.  using Base::merge;  // btree_multimap::swap(btree_multimap& other)  //  // Exchanges the contents of this `btree_multimap` with those of the `other`  // btree_multimap, avoiding invocation of any move, copy, or swap operations  // on individual elements.  //  // All iterators and references on the `btree_multimap` remain valid,  // excepting for the past-the-end iterator, which is invalidated.  using Base::swap;  // btree_multimap::contains()  //  // template <typename K> bool contains(const K& key) const:  //  // Determines whether an element comparing equal to the given `key` exists  // within the `btree_multimap`, returning `true` if so or `false` otherwise.  //  // Supports heterogeneous lookup, provided that the map is provided a  // compatible heterogeneous comparator.  using Base::contains;  // btree_multimap::count()  //  // template <typename K> size_type count(const K& key) const:  //  // Returns the number of elements comparing equal to the given `key` within  // the `btree_multimap`.  //  // Supports heterogeneous lookup, provided that the map is provided a  // compatible heterogeneous comparator.  using Base::count;  // btree_multimap::equal_range()  //  // Returns a closed range [first, last], defined by a `std::pair` of two  // iterators, containing all elements with the passed key in the  // `btree_multimap`.  using Base::equal_range;  // btree_multimap::find()  //  // template <typename K> iterator find(const K& key):  // template <typename K> const_iterator find(const K& key) const:  //  // Finds an element with the passed `key` within the `btree_multimap`.  //  // Supports heterogeneous lookup, provided that the map is provided a  // compatible heterogeneous comparator.  using Base::find;  // btree_multimap::get_allocator()  //  // Returns the allocator function associated with this `btree_multimap`.  using Base::get_allocator;  // btree_multimap::key_comp();  //  // Returns the key comparator associated with this `btree_multimap`.  using Base::key_comp;  // btree_multimap::value_comp();  //  // Returns the value comparator associated with this `btree_multimap`.  using Base::value_comp;};// absl::swap(absl::btree_multimap<>, absl::btree_multimap<>)//// Swaps the contents of two `absl::btree_multimap` containers.template <typename K, typename V, typename C, typename A>void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) {  return x.swap(y);}// absl::erase_if(absl::btree_multimap<>, Pred)//// Erases all elements that satisfy the predicate pred from the container.template <typename K, typename V, typename C, typename A, typename Pred>void erase_if(btree_multimap<K, V, C, A> &map, Pred pred) {  for (auto it = map.begin(); it != map.end();) {    if (pred(*it)) {      it = map.erase(it);    } else {      ++it;    }  }}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_CONTAINER_BTREE_MAP_H_
 |