| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314 | // Copyright 2019 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: inlined_vector.h// -----------------------------------------------------------------------------//// This header file contains the declaration and definition of an "inlined// vector" which behaves in an equivalent fashion to a `std::vector`, except// that storage for small sequences of the vector are provided inline without// requiring any heap allocation.//// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of// its template parameters. Instances where `size() <= N` hold contained// elements in inline space. Typically `N` is very small so that sequences that// are expected to be short do not require allocations.//// An `absl::InlinedVector` does not usually require a specific allocator. If// the inlined vector grows beyond its initial constraints, it will need to// allocate (as any normal `std::vector` would). This is usually performed with// the default allocator (defined as `std::allocator<T>`). Optionally, a custom// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_#define ABSL_CONTAINER_INLINED_VECTOR_H_#include <algorithm>#include <cassert>#include <cstddef>#include <cstdlib>#include <cstring>#include <initializer_list>#include <iterator>#include <memory>#include <type_traits>#include <utility>#include "absl/algorithm/algorithm.h"#include "absl/base/internal/throw_delegate.h"#include "absl/base/optimization.h"#include "absl/base/port.h"#include "absl/container/internal/inlined_vector.h"#include "absl/memory/memory.h"namespace absl {// -----------------------------------------------------------------------------// InlinedVector// -----------------------------------------------------------------------------//// An `absl::InlinedVector` is designed to be a drop-in replacement for// `std::vector` for use cases where the vector's size is sufficiently small// that it can be inlined. If the inlined vector does grow beyond its estimated// capacity, it will trigger an initial allocation on the heap, and will behave// as a `std:vector`. The API of the `absl::InlinedVector` within this file is// designed to cover the same API footprint as covered by `std::vector`.template <typename T, size_t N, typename A = std::allocator<T>>class InlinedVector {  static_assert(      N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");  using Storage = inlined_vector_internal::Storage<InlinedVector>;  using Tag = typename Storage::Tag;  using AllocatorAndTag = typename Storage::AllocatorAndTag;  using Allocation = typename Storage::Allocation;  template <typename Iterator>  using IsAtLeastForwardIterator = std::is_convertible<      typename std::iterator_traits<Iterator>::iterator_category,      std::forward_iterator_tag>;  template <typename Iterator>  using EnableIfAtLeastForwardIterator =      absl::enable_if_t<IsAtLeastForwardIterator<Iterator>::value>;  template <typename Iterator>  using DisableIfAtLeastForwardIterator =      absl::enable_if_t<!IsAtLeastForwardIterator<Iterator>::value>;  using rvalue_reference = typename Storage::rvalue_reference; public:  using allocator_type = typename Storage::allocator_type;  using value_type = typename Storage::value_type;  using pointer = typename Storage::pointer;  using const_pointer = typename Storage::const_pointer;  using reference = typename Storage::reference;  using const_reference = typename Storage::const_reference;  using size_type = typename Storage::size_type;  using difference_type = typename Storage::difference_type;  using iterator = typename Storage::iterator;  using const_iterator = typename Storage::const_iterator;  using reverse_iterator = typename Storage::reverse_iterator;  using const_reverse_iterator = typename Storage::const_reverse_iterator;  // ---------------------------------------------------------------------------  // InlinedVector Constructors and Destructor  // ---------------------------------------------------------------------------  // Creates an empty inlined vector with a default initialized allocator.  InlinedVector() noexcept(noexcept(allocator_type()))      : storage_(allocator_type()) {}  // Creates an empty inlined vector with a specified allocator.  explicit InlinedVector(const allocator_type& alloc) noexcept      : storage_(alloc) {}  // Creates an inlined vector with `n` copies of `value_type()`.  explicit InlinedVector(size_type n,                         const allocator_type& alloc = allocator_type())      : storage_(alloc) {    InitAssign(n);  }  // Creates an inlined vector with `n` copies of `v`.  InlinedVector(size_type n, const_reference v,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    InitAssign(n, v);  }  // Creates an inlined vector of copies of the values in `list`.  InlinedVector(std::initializer_list<value_type> list,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    AppendForwardRange(list.begin(), list.end());  }  // Creates an inlined vector with elements constructed from the provided  // forward iterator range [`first`, `last`).  //  // NOTE: The `enable_if` prevents ambiguous interpretation between a call to  // this constructor with two integral arguments and a call to the above  // `InlinedVector(size_type, const_reference)` constructor.  template <typename ForwardIterator,            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>  InlinedVector(ForwardIterator first, ForwardIterator last,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    AppendForwardRange(first, last);  }  // Creates an inlined vector with elements constructed from the provided input  // iterator range [`first`, `last`).  template <typename InputIterator,            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>  InlinedVector(InputIterator first, InputIterator last,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    std::copy(first, last, std::back_inserter(*this));  }  // Creates a copy of an `other` inlined vector using `other`'s allocator.  InlinedVector(const InlinedVector& other)      : InlinedVector(other, other.allocator()) {}  // Creates a copy of an `other` inlined vector using a specified allocator.  InlinedVector(const InlinedVector& other, const allocator_type& alloc)      : storage_(alloc) {    reserve(other.size());    if (allocated()) {      UninitializedCopy(other.begin(), other.end(), allocated_space());      tag().set_allocated_size(other.size());    } else {      UninitializedCopy(other.begin(), other.end(), inlined_space());      tag().set_inline_size(other.size());    }  }  // Creates an inlined vector by moving in the contents of an `other` inlined  // vector without performing any allocations. If `other` contains allocated  // memory, the newly-created instance will take ownership of that memory  // (leaving `other` itself empty). However, if `other` does not contain any  // allocated memory, the new inlined vector will  will perform element-wise  // move construction of `other`s elements.  //  // NOTE: since no allocation is performed for the inlined vector in either  // case, the `noexcept(...)` specification depends on whether moving the  // underlying objects can throw. We assume:  //  a) Move constructors should only throw due to allocation failure.  //  b) If `value_type`'s move constructor allocates, it uses the same  //     allocation function as the `InlinedVector`'s allocator. Thus, the move  //     constructor is non-throwing if the allocator is non-throwing or  //     `value_type`'s move constructor is specified as `noexcept`.  InlinedVector(InlinedVector&& other) noexcept(      absl::allocator_is_nothrow<allocator_type>::value ||      std::is_nothrow_move_constructible<value_type>::value)      : storage_(other.allocator()) {    if (other.allocated()) {      // We can just steal the underlying buffer from the source.      // That leaves the source empty, so we clear its size.      init_allocation(other.allocation());      tag().set_allocated_size(other.size());      other.tag() = Tag();    } else {      UninitializedCopy(          std::make_move_iterator(other.inlined_space()),          std::make_move_iterator(other.inlined_space() + other.size()),          inlined_space());      tag().set_inline_size(other.size());    }  }  // Creates an inlined vector by moving in the contents of an `other` inlined  // vector, performing allocations with the specified `alloc` allocator. If  // `other`'s allocator is not equal to `alloc` and `other` contains allocated  // memory, this move constructor will create a new allocation.  //  // NOTE: since allocation is performed in this case, this constructor can  // only be `noexcept` if the specified allocator is also `noexcept`. If this  // is the case, or if `other` contains allocated memory, this constructor  // performs element-wise move construction of its contents.  //  // Only in the case where `other`'s allocator is equal to `alloc` and `other`  // contains allocated memory will the newly created inlined vector take  // ownership of `other`'s allocated memory.  InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(      absl::allocator_is_nothrow<allocator_type>::value)      : storage_(alloc) {    if (other.allocated()) {      if (alloc == other.allocator()) {        // We can just steal the allocation from the source.        tag() = other.tag();        init_allocation(other.allocation());        other.tag() = Tag();      } else {        // We need to use our own allocator        reserve(other.size());        UninitializedCopy(std::make_move_iterator(other.begin()),                          std::make_move_iterator(other.end()),                          allocated_space());        tag().set_allocated_size(other.size());      }    } else {      UninitializedCopy(          std::make_move_iterator(other.inlined_space()),          std::make_move_iterator(other.inlined_space() + other.size()),          inlined_space());      tag().set_inline_size(other.size());    }  }  ~InlinedVector() { clear(); }  // ---------------------------------------------------------------------------  // InlinedVector Member Accessors  // ---------------------------------------------------------------------------  // `InlinedVector::empty()`  //  // Checks if the inlined vector has no elements.  bool empty() const noexcept { return !size(); }  // `InlinedVector::size()`  //  // Returns the number of elements in the inlined vector.  size_type size() const noexcept { return tag().size(); }  // `InlinedVector::max_size()`  //  // Returns the maximum number of elements the vector can hold.  size_type max_size() const noexcept {    // One bit of the size storage is used to indicate whether the inlined    // vector is allocated. As a result, the maximum size of the container that    // we can express is half of the max for `size_type`.    return (std::numeric_limits<size_type>::max)() / 2;  }  // `InlinedVector::capacity()`  //  // Returns the number of elements that can be stored in the inlined vector  // without requiring a reallocation of underlying memory.  //  // NOTE: For most inlined vectors, `capacity()` should equal the template  // parameter `N`. For inlined vectors which exceed this capacity, they  // will no longer be inlined and `capacity()` will equal its capacity on the  // allocated heap.  size_type capacity() const noexcept {    return allocated() ? allocation().capacity() : static_cast<size_type>(N);  }  // `InlinedVector::data()`  //  // Returns a `pointer` to elements of the inlined vector. This pointer can be  // used to access and modify the contained elements.  // Only results within the range [`0`, `size()`) are defined.  pointer data() noexcept {    return allocated() ? allocated_space() : inlined_space();  }  // Overload of `InlinedVector::data()` to return a `const_pointer` to elements  // of the inlined vector. This pointer can be used to access (but not modify)  // the contained elements.  const_pointer data() const noexcept {    return allocated() ? allocated_space() : inlined_space();  }  // `InlinedVector::operator[]()`  //  // Returns a `reference` to the `i`th element of the inlined vector using the  // array operator.  reference operator[](size_type i) {    assert(i < size());    return data()[i];  }  // Overload of `InlinedVector::operator[]()` to return a `const_reference` to  // the `i`th element of the inlined vector.  const_reference operator[](size_type i) const {    assert(i < size());    return data()[i];  }  // `InlinedVector::at()`  //  // Returns a `reference` to the `i`th element of the inlined vector.  reference at(size_type i) {    if (ABSL_PREDICT_FALSE(i >= size())) {      base_internal::ThrowStdOutOfRange(          "`InlinedVector::at(size_type)` failed bounds check");    }    return data()[i];  }  // Overload of `InlinedVector::at()` to return a `const_reference` to the  // `i`th element of the inlined vector.  const_reference at(size_type i) const {    if (ABSL_PREDICT_FALSE(i >= size())) {      base_internal::ThrowStdOutOfRange(          "`InlinedVector::at(size_type) const` failed bounds check");    }    return data()[i];  }  // `InlinedVector::front()`  //  // Returns a `reference` to the first element of the inlined vector.  reference front() {    assert(!empty());    return at(0);  }  // Overload of `InlinedVector::front()` returns a `const_reference` to the  // first element of the inlined vector.  const_reference front() const {    assert(!empty());    return at(0);  }  // `InlinedVector::back()`  //  // Returns a `reference` to the last element of the inlined vector.  reference back() {    assert(!empty());    return at(size() - 1);  }  // Overload of `InlinedVector::back()` to return a `const_reference` to the  // last element of the inlined vector.  const_reference back() const {    assert(!empty());    return at(size() - 1);  }  // `InlinedVector::begin()`  //  // Returns an `iterator` to the beginning of the inlined vector.  iterator begin() noexcept { return data(); }  // Overload of `InlinedVector::begin()` to return a `const_iterator` to  // the beginning of the inlined vector.  const_iterator begin() const noexcept { return data(); }  // `InlinedVector::end()`  //  // Returns an `iterator` to the end of the inlined vector.  iterator end() noexcept { return data() + size(); }  // Overload of `InlinedVector::end()` to return a `const_iterator` to the  // end of the inlined vector.  const_iterator end() const noexcept { return data() + size(); }  // `InlinedVector::cbegin()`  //  // Returns a `const_iterator` to the beginning of the inlined vector.  const_iterator cbegin() const noexcept { return begin(); }  // `InlinedVector::cend()`  //  // Returns a `const_iterator` to the end of the inlined vector.  const_iterator cend() const noexcept { return end(); }  // `InlinedVector::rbegin()`  //  // Returns a `reverse_iterator` from the end of the inlined vector.  reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }  // Overload of `InlinedVector::rbegin()` to return a  // `const_reverse_iterator` from the end of the inlined vector.  const_reverse_iterator rbegin() const noexcept {    return const_reverse_iterator(end());  }  // `InlinedVector::rend()`  //  // Returns a `reverse_iterator` from the beginning of the inlined vector.  reverse_iterator rend() noexcept { return reverse_iterator(begin()); }  // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`  // from the beginning of the inlined vector.  const_reverse_iterator rend() const noexcept {    return const_reverse_iterator(begin());  }  // `InlinedVector::crbegin()`  //  // Returns a `const_reverse_iterator` from the end of the inlined vector.  const_reverse_iterator crbegin() const noexcept { return rbegin(); }  // `InlinedVector::crend()`  //  // Returns a `const_reverse_iterator` from the beginning of the inlined  // vector.  const_reverse_iterator crend() const noexcept { return rend(); }  // `InlinedVector::get_allocator()`  //  // Returns a copy of the allocator of the inlined vector.  allocator_type get_allocator() const { return allocator(); }  // ---------------------------------------------------------------------------  // InlinedVector Member Mutators  // ---------------------------------------------------------------------------  // `InlinedVector::operator=()`  //  // Replaces the contents of the inlined vector with copies of the elements in  // the provided `std::initializer_list`.  InlinedVector& operator=(std::initializer_list<value_type> list) {    AssignForwardRange(list.begin(), list.end());    return *this;  }  // Overload of `InlinedVector::operator=()` to replace the contents of the  // inlined vector with the contents of `other`.  InlinedVector& operator=(const InlinedVector& other) {    if (ABSL_PREDICT_FALSE(this == &other)) return *this;    // Optimized to avoid reallocation.    // Prefer reassignment to copy construction for elements.    if (size() < other.size()) {  // grow      reserve(other.size());      std::copy(other.begin(), other.begin() + size(), begin());      std::copy(other.begin() + size(), other.end(), std::back_inserter(*this));    } else {  // maybe shrink      erase(begin() + other.size(), end());      std::copy(other.begin(), other.end(), begin());    }    return *this;  }  // Overload of `InlinedVector::operator=()` to replace the contents of the  // inlined vector with the contents of `other`.  //  // NOTE: As a result of calling this overload, `other` may be empty or it's  // contents may be left in a moved-from state.  InlinedVector& operator=(InlinedVector&& other) {    if (ABSL_PREDICT_FALSE(this == &other)) return *this;    if (other.allocated()) {      clear();      tag().set_allocated_size(other.size());      init_allocation(other.allocation());      other.tag() = Tag();    } else {      if (allocated()) clear();      // Both are inlined now.      if (size() < other.size()) {        auto mid = std::make_move_iterator(other.begin() + size());        std::copy(std::make_move_iterator(other.begin()), mid, begin());        UninitializedCopy(mid, std::make_move_iterator(other.end()), end());      } else {        auto new_end = std::copy(std::make_move_iterator(other.begin()),                                 std::make_move_iterator(other.end()), begin());        Destroy(new_end, end());      }      tag().set_inline_size(other.size());    }    return *this;  }  // `InlinedVector::assign()`  //  // Replaces the contents of the inlined vector with `n` copies of `v`.  void assign(size_type n, const_reference v) {    if (n <= size()) {  // Possibly shrink      std::fill_n(begin(), n, v);      erase(begin() + n, end());      return;    }    // Grow    reserve(n);    std::fill_n(begin(), size(), v);    if (allocated()) {      UninitializedFill(allocated_space() + size(), allocated_space() + n, v);      tag().set_allocated_size(n);    } else {      UninitializedFill(inlined_space() + size(), inlined_space() + n, v);      tag().set_inline_size(n);    }  }  // Overload of `InlinedVector::assign()` to replace the contents of the  // inlined vector with copies of the values in the provided  // `std::initializer_list`.  void assign(std::initializer_list<value_type> list) {    AssignForwardRange(list.begin(), list.end());  }  // Overload of `InlinedVector::assign()` to replace the contents of the  // inlined vector with the forward iterator range [`first`, `last`).  template <typename ForwardIterator,            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>  void assign(ForwardIterator first, ForwardIterator last) {    AssignForwardRange(first, last);  }  // Overload of `InlinedVector::assign()` to replace the contents of the  // inlined vector with the input iterator range [`first`, `last`).  template <typename InputIterator,            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>  void assign(InputIterator first, InputIterator last) {    size_type assign_index = 0;    for (; (assign_index < size()) && (first != last);         static_cast<void>(++assign_index), static_cast<void>(++first)) {      *(data() + assign_index) = *first;    }    erase(data() + assign_index, data() + size());    std::copy(first, last, std::back_inserter(*this));  }  // `InlinedVector::resize()`  //  // Resizes the inlined vector to contain `n` elements. If `n` is smaller than  // the inlined vector's current size, extra elements are destroyed. If `n` is  // larger than the initial size, new elements are value-initialized.  void resize(size_type n) {    size_type s = size();    if (n < s) {      erase(begin() + n, end());      return;    }    reserve(n);    assert(capacity() >= n);    // Fill new space with elements constructed in-place.    if (allocated()) {      UninitializedFill(allocated_space() + s, allocated_space() + n);      tag().set_allocated_size(n);    } else {      UninitializedFill(inlined_space() + s, inlined_space() + n);      tag().set_inline_size(n);    }  }  // Overload of `InlinedVector::resize()` to resize the inlined vector to  // contain `n` elements where, if `n` is larger than `size()`, the new values  // will be copy-constructed from `v`.  void resize(size_type n, const_reference v) {    size_type s = size();    if (n < s) {      erase(begin() + n, end());      return;    }    reserve(n);    assert(capacity() >= n);    // Fill new space with copies of `v`.    if (allocated()) {      UninitializedFill(allocated_space() + s, allocated_space() + n, v);      tag().set_allocated_size(n);    } else {      UninitializedFill(inlined_space() + s, inlined_space() + n, v);      tag().set_inline_size(n);    }  }  // `InlinedVector::insert()`  //  // Copies `v` into `pos`, returning an `iterator` pointing to the newly  // inserted element.  iterator insert(const_iterator pos, const_reference v) {    return emplace(pos, v);  }  // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning  // an iterator pointing to the newly inserted element.  iterator insert(const_iterator pos, rvalue_reference v) {    return emplace(pos, std::move(v));  }  // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies  // of `v` starting at `pos`. Returns an `iterator` pointing to the first of  // the newly inserted elements.  iterator insert(const_iterator pos, size_type n, const_reference v) {    return InsertWithCount(pos, n, v);  }  // Overload of `InlinedVector::insert()` for copying the contents of the  // `std::initializer_list` into the vector starting at `pos`. Returns an  // `iterator` pointing to the first of the newly inserted elements.  iterator insert(const_iterator pos, std::initializer_list<value_type> list) {    return insert(pos, list.begin(), list.end());  }  // Overload of `InlinedVector::insert()` for inserting elements constructed  // from the forward iterator range [`first`, `last`). Returns an `iterator`  // pointing to the first of the newly inserted elements.  //  // NOTE: The `enable_if` is intended to disambiguate the two three-argument  // overloads of `insert()`.  template <typename ForwardIterator,            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>  iterator insert(const_iterator pos, ForwardIterator first,                  ForwardIterator last) {    return InsertWithForwardRange(pos, first, last);  }  // Overload of `InlinedVector::insert()` for inserting elements constructed  // from the input iterator range [`first`, `last`). Returns an `iterator`  // pointing to the first of the newly inserted elements.  template <typename InputIterator,            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>  iterator insert(const_iterator pos, InputIterator first, InputIterator last) {    size_type initial_insert_index = std::distance(cbegin(), pos);    for (size_type insert_index = initial_insert_index; first != last;         static_cast<void>(++insert_index), static_cast<void>(++first)) {      insert(data() + insert_index, *first);    }    return iterator(data() + initial_insert_index);  }  // `InlinedVector::emplace()`  //  // Constructs and inserts an object in the inlined vector at the given `pos`,  // returning an `iterator` pointing to the newly emplaced element.  template <typename... Args>  iterator emplace(const_iterator pos, Args&&... args) {    assert(pos >= begin());    assert(pos <= end());    if (ABSL_PREDICT_FALSE(pos == end())) {      emplace_back(std::forward<Args>(args)...);      return end() - 1;    }    T new_t = T(std::forward<Args>(args)...);    auto range = ShiftRight(pos, 1);    if (range.first == range.second) {      // constructing into uninitialized memory      Construct(range.first, std::move(new_t));    } else {      // assigning into moved-from object      *range.first = T(std::move(new_t));    }    return range.first;  }  // `InlinedVector::emplace_back()`  //  // Constructs and appends a new element to the end of the inlined vector,  // returning a `reference` to the emplaced element.  template <typename... Args>  reference emplace_back(Args&&... args) {    size_type s = size();    if (ABSL_PREDICT_FALSE(s == capacity())) {      return GrowAndEmplaceBack(std::forward<Args>(args)...);    }    pointer space;    if (allocated()) {      tag().set_allocated_size(s + 1);      space = allocated_space();    } else {      tag().set_inline_size(s + 1);      space = inlined_space();    }    return Construct(space + s, std::forward<Args>(args)...);  }  // `InlinedVector::push_back()`  //  // Appends a copy of `v` to the end of the inlined vector.  void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }  // Overload of `InlinedVector::push_back()` for moving `v` into a newly  // appended element.  void push_back(rvalue_reference v) {    static_cast<void>(emplace_back(std::move(v)));  }  // `InlinedVector::pop_back()`  //  // Destroys the element at the end of the inlined vector and shrinks the size  // by `1` (unless the inlined vector is empty, in which case this is a no-op).  void pop_back() noexcept {    assert(!empty());    size_type s = size();    if (allocated()) {      Destroy(allocated_space() + s - 1, allocated_space() + s);      tag().set_allocated_size(s - 1);    } else {      Destroy(inlined_space() + s - 1, inlined_space() + s);      tag().set_inline_size(s - 1);    }  }  // `InlinedVector::erase()`  //  // Erases the element at `pos` of the inlined vector, returning an `iterator`  // pointing to the first element following the erased element.  //  // NOTE: May return the end iterator, which is not dereferencable.  iterator erase(const_iterator pos) {    assert(pos >= begin());    assert(pos < end());    iterator position = const_cast<iterator>(pos);    std::move(position + 1, end(), position);    pop_back();    return position;  }  // Overload of `InlinedVector::erase()` for erasing all elements in the  // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing  // to the first element following the range erased or the end iterator if `to`  // was the end iterator.  iterator erase(const_iterator from, const_iterator to) {    assert(begin() <= from);    assert(from <= to);    assert(to <= end());    iterator range_start = const_cast<iterator>(from);    iterator range_end = const_cast<iterator>(to);    size_type s = size();    ptrdiff_t erase_gap = std::distance(range_start, range_end);    if (erase_gap > 0) {      pointer space;      if (allocated()) {        space = allocated_space();        tag().set_allocated_size(s - erase_gap);      } else {        space = inlined_space();        tag().set_inline_size(s - erase_gap);      }      std::move(range_end, space + s, range_start);      Destroy(space + s - erase_gap, space + s);    }    return range_start;  }  // `InlinedVector::clear()`  //  // Destroys all elements in the inlined vector, sets the size of `0` and  // deallocates the heap allocation if the inlined vector was allocated.  void clear() noexcept {    size_type s = size();    if (allocated()) {      Destroy(allocated_space(), allocated_space() + s);      allocation().Dealloc(allocator());    } else if (s != 0) {  // do nothing for empty vectors      Destroy(inlined_space(), inlined_space() + s);    }    tag() = Tag();  }  // `InlinedVector::reserve()`  //  // Enlarges the underlying representation of the inlined vector so it can hold  // at least `n` elements. This method does not change `size()` or the actual  // contents of the vector.  //  // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no  // effects. Otherwise, `reserve()` will reallocate, performing an n-time  // element-wise move of everything contained.  void reserve(size_type n) {    if (n > capacity()) {      // Make room for new elements      EnlargeBy(n - size());    }  }  // `InlinedVector::shrink_to_fit()`  //  // Reduces memory usage by freeing unused memory. After this call, calls to  // `capacity()` will be equal to `max(N, size())`.  //  // If `size() <= N` and the elements are currently stored on the heap, they  // will be moved to the inlined storage and the heap memory will be  // deallocated.  //  // If `size() > N` and `size() < capacity()` the elements will be moved to a  // smaller heap allocation.  void shrink_to_fit() {    const auto s = size();    if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return;    if (s <= N) {      // Move the elements to the inlined storage.      // We have to do this using a temporary, because `inlined_storage` and      // `allocation_storage` are in a union field.      auto temp = std::move(*this);      assign(std::make_move_iterator(temp.begin()),             std::make_move_iterator(temp.end()));      return;    }    // Reallocate storage and move elements.    // We can't simply use the same approach as above, because `assign()` would    // call into `reserve()` internally and reserve larger capacity than we need    Allocation new_allocation(allocator(), s);    UninitializedCopy(std::make_move_iterator(allocated_space()),                      std::make_move_iterator(allocated_space() + s),                      new_allocation.buffer());    ResetAllocation(new_allocation, s);  }  // `InlinedVector::swap()`  //  // Swaps the contents of this inlined vector with the contents of `other`.  void swap(InlinedVector& other) {    if (ABSL_PREDICT_FALSE(this == &other)) return;    SwapImpl(other);  } private:  template <typename H, typename TheT, size_t TheN, typename TheA>  friend auto AbslHashValue(H h, const InlinedVector<TheT, TheN, TheA>& v) -> H;  const Tag& tag() const { return storage_.allocator_and_tag_.tag(); }  Tag& tag() { return storage_.allocator_and_tag_.tag(); }  Allocation& allocation() {    return reinterpret_cast<Allocation&>(        storage_.rep_.allocation_storage.allocation);  }  const Allocation& allocation() const {    return reinterpret_cast<const Allocation&>(        storage_.rep_.allocation_storage.allocation);  }  void init_allocation(const Allocation& allocation) {    new (&storage_.rep_.allocation_storage.allocation) Allocation(allocation);  }  // TODO(absl-team): investigate whether the reinterpret_cast is appropriate.  pointer inlined_space() {    return reinterpret_cast<pointer>(        std::addressof(storage_.rep_.inlined_storage.inlined[0]));  }  const_pointer inlined_space() const {    return reinterpret_cast<const_pointer>(        std::addressof(storage_.rep_.inlined_storage.inlined[0]));  }  pointer allocated_space() { return allocation().buffer(); }  const_pointer allocated_space() const { return allocation().buffer(); }  const allocator_type& allocator() const {    return storage_.allocator_and_tag_.allocator();  }  allocator_type& allocator() {    return storage_.allocator_and_tag_.allocator();  }  bool allocated() const { return tag().allocated(); }  void ResetAllocation(Allocation new_allocation, size_type new_size) {    if (allocated()) {      Destroy(allocated_space(), allocated_space() + size());      assert(begin() == allocated_space());      allocation().Dealloc(allocator());      allocation() = new_allocation;    } else {      Destroy(inlined_space(), inlined_space() + size());      init_allocation(new_allocation);  // bug: only init once    }    tag().set_allocated_size(new_size);  }  template <typename... Args>  reference Construct(pointer p, Args&&... args) {    std::allocator_traits<allocator_type>::construct(        allocator(), p, std::forward<Args>(args)...);    return *p;  }  template <typename Iterator>  void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {    for (; src != src_last; ++dst, ++src) Construct(dst, *src);  }  template <typename... Args>  void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {    for (; dst != dst_last; ++dst) Construct(dst, args...);  }  // Destroy [`from`, `to`) in place.  void Destroy(pointer from, pointer to) {    for (pointer cur = from; cur != to; ++cur) {      std::allocator_traits<allocator_type>::destroy(allocator(), cur);    }#if !defined(NDEBUG)    // Overwrite unused memory with `0xab` so we can catch uninitialized usage.    // Cast to `void*` to tell the compiler that we don't care that we might be    // scribbling on a vtable pointer.    if (from != to) {      auto len = sizeof(value_type) * std::distance(from, to);      std::memset(reinterpret_cast<void*>(from), 0xab, len);    }#endif  // !defined(NDEBUG)  }  // Enlarge the underlying representation so we can store `size_ + delta` elems  // in allocated space. The size is not changed, and any newly added memory is  // not initialized.  void EnlargeBy(size_type delta) {    const size_type s = size();    assert(s <= capacity());    size_type target = (std::max)(N, s + delta);    // Compute new capacity by repeatedly doubling current capacity    // TODO(psrc): Check and avoid overflow?    size_type new_capacity = capacity();    while (new_capacity < target) {      new_capacity <<= 1;    }    Allocation new_allocation(allocator(), new_capacity);    UninitializedCopy(std::make_move_iterator(data()),                      std::make_move_iterator(data() + s),                      new_allocation.buffer());    ResetAllocation(new_allocation, s);  }  // Shift all elements from `position` to `end()` by `n` places to the right.  // If the vector needs to be enlarged, memory will be allocated.  // Returns `iterator`s pointing to the start of the previously-initialized  // portion and the start of the uninitialized portion of the created gap.  // The number of initialized spots is `pair.second - pair.first`. The number  // of raw spots is `n - (pair.second - pair.first)`.  //  // Updates the size of the InlinedVector internally.  std::pair<iterator, iterator> ShiftRight(const_iterator position,                                           size_type n) {    iterator start_used = const_cast<iterator>(position);    iterator start_raw = const_cast<iterator>(position);    size_type s = size();    size_type required_size = s + n;    if (required_size > capacity()) {      // Compute new capacity by repeatedly doubling current capacity      size_type new_capacity = capacity();      while (new_capacity < required_size) {        new_capacity <<= 1;      }      // Move everyone into the new allocation, leaving a gap of `n` for the      // requested shift.      Allocation new_allocation(allocator(), new_capacity);      size_type index = position - begin();      UninitializedCopy(std::make_move_iterator(data()),                        std::make_move_iterator(data() + index),                        new_allocation.buffer());      UninitializedCopy(std::make_move_iterator(data() + index),                        std::make_move_iterator(data() + s),                        new_allocation.buffer() + index + n);      ResetAllocation(new_allocation, s);      // New allocation means our iterator is invalid, so we'll recalculate.      // Since the entire gap is in new space, there's no used space to reuse.      start_raw = begin() + index;      start_used = start_raw;    } else {      // If we had enough space, it's a two-part move. Elements going into      // previously-unoccupied space need an `UninitializedCopy()`. Elements      // going into a previously-occupied space are just a `std::move()`.      iterator pos = const_cast<iterator>(position);      iterator raw_space = end();      size_type slots_in_used_space = raw_space - pos;      size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space);      size_type new_elements_in_raw_space = n - new_elements_in_used_space;      size_type old_elements_in_used_space =          slots_in_used_space - new_elements_in_used_space;      UninitializedCopy(          std::make_move_iterator(pos + old_elements_in_used_space),          std::make_move_iterator(raw_space),          raw_space + new_elements_in_raw_space);      std::move_backward(pos, pos + old_elements_in_used_space, raw_space);      // If the gap is entirely in raw space, the used space starts where the      // raw space starts, leaving no elements in used space. If the gap is      // entirely in used space, the raw space starts at the end of the gap,      // leaving all elements accounted for within the used space.      start_used = pos;      start_raw = pos + new_elements_in_used_space;    }    tag().add_size(n);    return std::make_pair(start_used, start_raw);  }  template <typename... Args>  reference GrowAndEmplaceBack(Args&&... args) {    assert(size() == capacity());    const size_type s = size();    Allocation new_allocation(allocator(), 2 * capacity());    reference new_element =        Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);    UninitializedCopy(std::make_move_iterator(data()),                      std::make_move_iterator(data() + s),                      new_allocation.buffer());    ResetAllocation(new_allocation, s + 1);    return new_element;  }  void InitAssign(size_type n) {    if (n > N) {      Allocation new_allocation(allocator(), n);      init_allocation(new_allocation);      UninitializedFill(allocated_space(), allocated_space() + n);      tag().set_allocated_size(n);    } else {      UninitializedFill(inlined_space(), inlined_space() + n);      tag().set_inline_size(n);    }  }  void InitAssign(size_type n, const_reference v) {    if (n > N) {      Allocation new_allocation(allocator(), n);      init_allocation(new_allocation);      UninitializedFill(allocated_space(), allocated_space() + n, v);      tag().set_allocated_size(n);    } else {      UninitializedFill(inlined_space(), inlined_space() + n, v);      tag().set_inline_size(n);    }  }  template <typename ForwardIt>  void AssignForwardRange(ForwardIt first, ForwardIt last) {    static_assert(IsAtLeastForwardIterator<ForwardIt>::value, "");    auto length = std::distance(first, last);    // Prefer reassignment to copy construction for elements.    if (static_cast<size_type>(length) <= size()) {      erase(std::copy(first, last, begin()), end());      return;    }    reserve(length);    iterator out = begin();    for (; out != end(); ++first, ++out) *out = *first;    if (allocated()) {      UninitializedCopy(first, last, out);      tag().set_allocated_size(length);    } else {      UninitializedCopy(first, last, out);      tag().set_inline_size(length);    }  }  template <typename ForwardIt>  void AppendForwardRange(ForwardIt first, ForwardIt last) {    static_assert(IsAtLeastForwardIterator<ForwardIt>::value, "");    auto length = std::distance(first, last);    reserve(size() + length);    if (allocated()) {      UninitializedCopy(first, last, allocated_space() + size());      tag().set_allocated_size(size() + length);    } else {      UninitializedCopy(first, last, inlined_space() + size());      tag().set_inline_size(size() + length);    }  }  iterator InsertWithCount(const_iterator position, size_type n,                           const_reference v) {    assert(position >= begin() && position <= end());    if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position);    value_type copy = v;    std::pair<iterator, iterator> it_pair = ShiftRight(position, n);    std::fill(it_pair.first, it_pair.second, copy);    UninitializedFill(it_pair.second, it_pair.first + n, copy);    return it_pair.first;  }  template <typename ForwardIt>  iterator InsertWithForwardRange(const_iterator position, ForwardIt first,                                  ForwardIt last) {    static_assert(IsAtLeastForwardIterator<ForwardIt>::value, "");    assert(position >= begin() && position <= end());    if (ABSL_PREDICT_FALSE(first == last))      return const_cast<iterator>(position);    auto n = std::distance(first, last);    std::pair<iterator, iterator> it_pair = ShiftRight(position, n);    size_type used_spots = it_pair.second - it_pair.first;    auto open_spot = std::next(first, used_spots);    std::copy(first, open_spot, it_pair.first);    UninitializedCopy(open_spot, last, it_pair.second);    return it_pair.first;  }  void SwapImpl(InlinedVector& other) {    using std::swap;  // Augment ADL with `std::swap`.    if (allocated() && other.allocated()) {      // Both out of line, so just swap the tag, allocation, and allocator.      swap(tag(), other.tag());      swap(allocation(), other.allocation());      swap(allocator(), other.allocator());      return;    }    if (!allocated() && !other.allocated()) {      // Both inlined: swap up to smaller size, then move remaining elements.      InlinedVector* a = this;      InlinedVector* b = &other;      if (size() < other.size()) {        swap(a, b);      }      const size_type a_size = a->size();      const size_type b_size = b->size();      assert(a_size >= b_size);      // `a` is larger. Swap the elements up to the smaller array size.      std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size,                       b->inlined_space());      // Move the remaining elements:      //   [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`      b->UninitializedCopy(a->inlined_space() + b_size,                           a->inlined_space() + a_size,                           b->inlined_space() + b_size);      a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size);      swap(a->tag(), b->tag());      swap(a->allocator(), b->allocator());      assert(b->size() == a_size);      assert(a->size() == b_size);      return;    }    // One is out of line, one is inline.    // We first move the elements from the inlined vector into the    // inlined space in the other vector.  We then put the other vector's    // pointer/capacity into the originally inlined vector and swap    // the tags.    InlinedVector* a = this;    InlinedVector* b = &other;    if (a->allocated()) {      swap(a, b);    }    assert(!a->allocated());    assert(b->allocated());    const size_type a_size = a->size();    const size_type b_size = b->size();    // In an optimized build, `b_size` would be unused.    static_cast<void>(b_size);    // Made Local copies of `size()`, don't need `tag()` accurate anymore    swap(a->tag(), b->tag());    // Copy `b_allocation` out before `b`'s union gets clobbered by    // `inline_space`    Allocation b_allocation = b->allocation();    b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,                         b->inlined_space());    a->Destroy(a->inlined_space(), a->inlined_space() + a_size);    a->allocation() = b_allocation;    if (a->allocator() != b->allocator()) {      swap(a->allocator(), b->allocator());    }    assert(b->size() == a_size);    assert(a->size() == b_size);  }  Storage storage_;};// -----------------------------------------------------------------------------// InlinedVector Non-Member Functions// -----------------------------------------------------------------------------// `swap()`//// Swaps the contents of two inlined vectors. This convenience function// simply calls `InlinedVector::swap()`.template <typename T, size_t N, typename A>auto swap(InlinedVector<T, N, A>& a,          InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) -> void {  a.swap(b);}// `operator==()`//// Tests the equivalency of the contents of two inlined vectors.template <typename T, size_t N, typename A>auto operator==(const InlinedVector<T, N, A>& a,                const InlinedVector<T, N, A>& b) -> bool {  return absl::equal(a.begin(), a.end(), b.begin(), b.end());}// `operator!=()`//// Tests the inequality of the contents of two inlined vectors.template <typename T, size_t N, typename A>auto operator!=(const InlinedVector<T, N, A>& a,                const InlinedVector<T, N, A>& b) -> bool {  return !(a == b);}// `operator<()`//// Tests whether the contents of one inlined vector are less than the contents// of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>auto operator<(const InlinedVector<T, N, A>& a, const InlinedVector<T, N, A>& b)    -> bool {  return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());}// `operator>()`//// Tests whether the contents of one inlined vector are greater than the// contents of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>auto operator>(const InlinedVector<T, N, A>& a, const InlinedVector<T, N, A>& b)    -> bool {  return b < a;}// `operator<=()`//// Tests whether the contents of one inlined vector are less than or equal to// the contents of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>auto operator<=(const InlinedVector<T, N, A>& a,                const InlinedVector<T, N, A>& b) -> bool {  return !(b < a);}// `operator>=()`//// Tests whether the contents of one inlined vector are greater than or equal to// the contents of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>auto operator>=(const InlinedVector<T, N, A>& a,                const InlinedVector<T, N, A>& b) -> bool {  return !(a < b);}// AbslHashValue()//// Provides `absl::Hash` support for inlined vectors. You do not normally call// this function directly.template <typename H, typename TheT, size_t TheN, typename TheA>auto AbslHashValue(H h, const InlinedVector<TheT, TheN, TheA>& v) -> H {  auto p = v.data();  auto n = v.size();  return H::combine(H::combine_contiguous(std::move(h), p, n), n);}}  // namespace absl// -----------------------------------------------------------------------------// Implementation of InlinedVector//// Do not depend on any below implementation details!// -----------------------------------------------------------------------------#endif  // ABSL_CONTAINER_INLINED_VECTOR_H_
 |