| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/internal/distribution_test_util.h"#include "gtest/gtest.h"namespace {TEST(TestUtil, InverseErf) {  const struct {    const double z;    const double value;  } kErfInvTable[] = {      {0.0000001, 8.86227e-8},      {0.00001, 8.86227e-6},      {0.5, 0.4769362762044},      {0.6, 0.5951160814499},      {0.99999, 3.1234132743},      {0.9999999, 3.7665625816},      {0.999999944, 3.8403850690566985},  // = log((1-x) * (1+x)) =~ 16.004      {0.999999999, 4.3200053849134452},  };  for (const auto& data : kErfInvTable) {    auto value = absl::random_internal::erfinv(data.z);    // Log using the Wolfram-alpha function name & parameters.    EXPECT_NEAR(value, data.value, 1e-8)        << " InverseErf[" << data.z << "]  (expected=" << data.value << ")  -> "        << value;  }}const struct {  const double p;  const double q;  const double x;  const double alpha;} kBetaTable[] = {    {0.5, 0.5, 0.01, 0.06376856085851985},    {0.5, 0.5, 0.1, 0.2048327646991335},    {0.5, 0.5, 1, 1},    {1, 0.5, 0, 0},    {1, 0.5, 0.01, 0.005012562893380045},    {1, 0.5, 0.1, 0.0513167019494862},    {1, 0.5, 0.5, 0.2928932188134525},    {1, 1, 0.5, 0.5},    {2, 2, 0.1, 0.028},    {2, 2, 0.2, 0.104},    {2, 2, 0.3, 0.216},    {2, 2, 0.4, 0.352},    {2, 2, 0.5, 0.5},    {2, 2, 0.6, 0.648},    {2, 2, 0.7, 0.784},    {2, 2, 0.8, 0.896},    {2, 2, 0.9, 0.972},    {5.5, 5, 0.5, 0.4361908850559777},    {10, 0.5, 0.9, 0.1516409096346979},    {10, 5, 0.5, 0.08978271484375},    {10, 5, 1, 1},    {10, 10, 0.5, 0.5},    {20, 5, 0.8, 0.4598773297575791},    {20, 10, 0.6, 0.2146816102371739},    {20, 10, 0.8, 0.9507364826957875},    {20, 20, 0.5, 0.5},    {20, 20, 0.6, 0.8979413687105918},    {30, 10, 0.7, 0.2241297491808366},    {30, 10, 0.8, 0.7586405487192086},    {40, 20, 0.7, 0.7001783247477069},    {1, 0.5, 0.1, 0.0513167019494862},    {1, 0.5, 0.2, 0.1055728090000841},    {1, 0.5, 0.3, 0.1633399734659245},    {1, 0.5, 0.4, 0.2254033307585166},    {1, 2, 0.2, 0.36},    {1, 3, 0.2, 0.488},    {1, 4, 0.2, 0.5904},    {1, 5, 0.2, 0.67232},    {2, 2, 0.3, 0.216},    {3, 2, 0.3, 0.0837},    {4, 2, 0.3, 0.03078},    {5, 2, 0.3, 0.010935},    // These values test small & large points along the range of the Beta    // function.    //    // When selecting test points, remember that if BetaIncomplete(x, p, q)    // returns the same value to within the limits of precision over a large    // domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an    // essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.    // BetaRegularized[x, 0.00001, 0.00001],    // For x in {~0.001 ... ~0.999}, => ~0.5    {1e-5, 1e-5, 1e-5, 0.4999424388184638311},    {1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},    // BetaRegularized[x, 0.00001, 10000].    // For x in {~epsilon ... 1.0}, => ~1    {1e-5, 1e5, 1e-6, 0.9999817708130066936},    {1e-5, 1e5, (1.0 - 1e-7), 1.0},    // BetaRegularized[x, 10000, 0.00001].    // For x in {0 .. 1-epsilon}, => ~0    {1e5, 1e-5, 1e-6, 0},    {1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},};TEST(BetaTest, BetaIncomplete) {  for (const auto& data : kBetaTable) {    auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);    // Log using the Wolfram-alpha function name & parameters.    EXPECT_NEAR(value, data.alpha, 1e-12)        << " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q        << "]  (expected=" << data.alpha << ")  -> " << value;  }}TEST(BetaTest, BetaIncompleteInv) {  for (const auto& data : kBetaTable) {    auto value =        absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);    // Log using the Wolfram-alpha function name & parameters.    EXPECT_NEAR(value, data.x, 1e-6)        << " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "        << data.q << "]  (expected=" << data.x << ")  -> " << value;  }}TEST(MaxErrorTolerance, MaxErrorTolerance) {  std::vector<std::pair<double, double>> cases = {      {0.0000001, 8.86227e-8 * 1.41421356237},      {0.00001, 8.86227e-6 * 1.41421356237},      {0.5, 0.4769362762044 * 1.41421356237},      {0.6, 0.5951160814499 * 1.41421356237},      {0.99999, 3.1234132743 * 1.41421356237},      {0.9999999, 3.7665625816 * 1.41421356237},      {0.999999944, 3.8403850690566985 * 1.41421356237},      {0.999999999, 4.3200053849134452 * 1.41421356237}};  for (auto entry : cases) {    EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),                entry.second, 1e-8);  }}TEST(ZScore, WithSameMean) {  absl::random_internal::DistributionMoments m;  m.n = 100;  m.mean = 5;  m.variance = 1;  EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);  m.n = 1;  m.mean = 0;  m.variance = 1;  EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);  m.n = 10000;  m.mean = -5;  m.variance = 100;  EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);}TEST(ZScore, DifferentMean) {  absl::random_internal::DistributionMoments m;  m.n = 100;  m.mean = 5;  m.variance = 1;  EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);  m.n = 1;  m.mean = 0;  m.variance = 1;  EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);  m.n = 10000;  m.mean = -5;  m.variance = 100;  EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);}}  // namespace
 |