| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_#include <cstddef>#include <iostream>#include <vector>#include "absl/strings/string_view.h"#include "absl/types/span.h"// NOTE: The functions in this file are test only, and are should not be used in// non-test code.namespace absl {namespace random_internal {// http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%205%20-%20Normality%20Testing.pdf// Compute the 1st to 4th standard moments:// mean, variance, skewness, and kurtosis.// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htmstruct DistributionMoments {  size_t n = 0;  double mean = 0.0;  double variance = 0.0;  double skewness = 0.0;  double kurtosis = 0.0;};DistributionMoments ComputeDistributionMoments(    absl::Span<const double> data_points);std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments);// Computes the Z-score for a set of data with the given distribution moments// compared against `expected_mean`.double ZScore(double expected_mean, const DistributionMoments& moments);// Returns the probability of success required for a single trial to ensure that// after `num_trials` trials, the probability of at least one failure is no more// than `p_fail`.double RequiredSuccessProbability(double p_fail, int num_trials);// Computes the maximum distance from the mean tolerable, for Z-Tests that are// expected to pass with `acceptance_probability`. Will terminate if the// resulting tolerance is zero (due to passing in 0.0 for// `acceptance_probability` or rounding errors).//// For example,// MaxErrorTolerance(0.001) = 0.0// MaxErrorTolerance(0.5) = ~0.47// MaxErrorTolerance(1.0) = infdouble MaxErrorTolerance(double acceptance_probability);// Approximation to inverse of the Error Function in double precision.// (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)double erfinv(double x);// Beta(p, q) = Gamma(p) * Gamma(q) / Gamma(p+q)double beta(double p, double q);// The inverse of the normal survival function.double InverseNormalSurvival(double x);// Returns whether actual is "near" expected, based on the bound.bool Near(absl::string_view msg, double actual, double expected, double bound);// Implements the incomplete regularized beta function, AS63, BETAIN.//    https://www.jstor.org/stable/2346797//// BetaIncomplete(x, p, q), where//   `x` is the value of the upper limit//   `p` is beta parameter p, `q` is beta parameter q.//// NOTE: This is a test-only function which is only accurate to within, at most,// 1e-13 of the actual value.//double BetaIncomplete(double x, double p, double q);// Implements the inverse of the incomplete regularized beta function, AS109,// XINBTA.//   https://www.jstor.org/stable/2346798//   https://www.jstor.org/stable/2346887//// BetaIncompleteInv(p, q, beta, alhpa)//   `p` is beta parameter p, `q` is beta parameter q.//   `alpha` is the value of the lower tail area.//// NOTE: This is a test-only function and, when successful, is only accurate to// within ~1e-6 of the actual value; there are some cases where it diverges from// the actual value by much more than that.  The function uses Newton's method,// and thus the runtime is highly variable.double BetaIncompleteInv(double p, double q, double alpha);}  // namespace random_internal}  // namespace absl#endif  // ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
 |