| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/internal/distribution_test_util.h"#include <cassert>#include <cmath>#include <string>#include <vector>#include "absl/base/internal/raw_logging.h"#include "absl/base/macros.h"#include "absl/strings/str_cat.h"#include "absl/strings/str_format.h"namespace absl {namespace random_internal {namespace {#if defined(__EMSCRIPTEN__)// Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.inline double fma(double x, double y, double z) { return (x * y) + z; }#endif}  // namespaceDistributionMoments ComputeDistributionMoments(    absl::Span<const double> data_points) {  DistributionMoments result;  // Compute m1  for (double x : data_points) {    result.n++;    result.mean += x;  }  result.mean /= static_cast<double>(result.n);  // Compute m2, m3, m4  for (double x : data_points) {    double v = x - result.mean;    result.variance += v * v;    result.skewness += v * v * v;    result.kurtosis += v * v * v * v;  }  result.variance /= static_cast<double>(result.n - 1);  result.skewness /= static_cast<double>(result.n);  result.skewness /= std::pow(result.variance, 1.5);  result.kurtosis /= static_cast<double>(result.n);  result.kurtosis /= std::pow(result.variance, 2.0);  return result;  // When validating the min/max count, the following confidence intervals may  // be of use:  // 3.291 * stddev = 99.9% CI  // 2.576 * stddev = 99% CI  // 1.96 * stddev  = 95% CI  // 1.65 * stddev  = 90% CI}std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {  return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",                               moments.mean, std::sqrt(moments.variance),                               moments.skewness, moments.kurtosis);}double InverseNormalSurvival(double x) {  // inv_sf(u) = -sqrt(2) * erfinv(2u-1)  static constexpr double kSqrt2 = 1.4142135623730950488;  return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);}bool Near(absl::string_view msg, double actual, double expected, double bound) {  assert(bound > 0.0);  double delta = fabs(expected - actual);  if (delta < bound) {    return true;  }  std::string formatted = absl::StrCat(      msg, " actual=", actual, " expected=", expected, " err=", delta / bound);  ABSL_RAW_LOG(INFO, "%s", formatted.c_str());  return false;}// TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try// to use std::beta().  As of this writing P0226R1 is not implemented// in libc++: http://libcxx.llvm.org/cxx1z_status.htmldouble beta(double p, double q) {  // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)  double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);  return std::exp(lbeta);}// Approximation to inverse of the Error Function in double precision.// (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)double erfinv(double x) {#if !defined(__EMSCRIPTEN__)  using std::fma;#endif  double w = 0.0;  double p = 0.0;  w = -std::log((1.0 - x) * (1.0 + x));  if (w < 6.250000) {    w = w - 3.125000;    p = -3.6444120640178196996e-21;    p = fma(p, w, -1.685059138182016589e-19);    p = fma(p, w, 1.2858480715256400167e-18);    p = fma(p, w, 1.115787767802518096e-17);    p = fma(p, w, -1.333171662854620906e-16);    p = fma(p, w, 2.0972767875968561637e-17);    p = fma(p, w, 6.6376381343583238325e-15);    p = fma(p, w, -4.0545662729752068639e-14);    p = fma(p, w, -8.1519341976054721522e-14);    p = fma(p, w, 2.6335093153082322977e-12);    p = fma(p, w, -1.2975133253453532498e-11);    p = fma(p, w, -5.4154120542946279317e-11);    p = fma(p, w, 1.051212273321532285e-09);    p = fma(p, w, -4.1126339803469836976e-09);    p = fma(p, w, -2.9070369957882005086e-08);    p = fma(p, w, 4.2347877827932403518e-07);    p = fma(p, w, -1.3654692000834678645e-06);    p = fma(p, w, -1.3882523362786468719e-05);    p = fma(p, w, 0.0001867342080340571352);    p = fma(p, w, -0.00074070253416626697512);    p = fma(p, w, -0.0060336708714301490533);    p = fma(p, w, 0.24015818242558961693);    p = fma(p, w, 1.6536545626831027356);  } else if (w < 16.000000) {    w = std::sqrt(w) - 3.250000;    p = 2.2137376921775787049e-09;    p = fma(p, w, 9.0756561938885390979e-08);    p = fma(p, w, -2.7517406297064545428e-07);    p = fma(p, w, 1.8239629214389227755e-08);    p = fma(p, w, 1.5027403968909827627e-06);    p = fma(p, w, -4.013867526981545969e-06);    p = fma(p, w, 2.9234449089955446044e-06);    p = fma(p, w, 1.2475304481671778723e-05);    p = fma(p, w, -4.7318229009055733981e-05);    p = fma(p, w, 6.8284851459573175448e-05);    p = fma(p, w, 2.4031110387097893999e-05);    p = fma(p, w, -0.0003550375203628474796);    p = fma(p, w, 0.00095328937973738049703);    p = fma(p, w, -0.0016882755560235047313);    p = fma(p, w, 0.0024914420961078508066);    p = fma(p, w, -0.0037512085075692412107);    p = fma(p, w, 0.005370914553590063617);    p = fma(p, w, 1.0052589676941592334);    p = fma(p, w, 3.0838856104922207635);  } else {    w = std::sqrt(w) - 5.000000;    p = -2.7109920616438573243e-11;    p = fma(p, w, -2.5556418169965252055e-10);    p = fma(p, w, 1.5076572693500548083e-09);    p = fma(p, w, -3.7894654401267369937e-09);    p = fma(p, w, 7.6157012080783393804e-09);    p = fma(p, w, -1.4960026627149240478e-08);    p = fma(p, w, 2.9147953450901080826e-08);    p = fma(p, w, -6.7711997758452339498e-08);    p = fma(p, w, 2.2900482228026654717e-07);    p = fma(p, w, -9.9298272942317002539e-07);    p = fma(p, w, 4.5260625972231537039e-06);    p = fma(p, w, -1.9681778105531670567e-05);    p = fma(p, w, 7.5995277030017761139e-05);    p = fma(p, w, -0.00021503011930044477347);    p = fma(p, w, -0.00013871931833623122026);    p = fma(p, w, 1.0103004648645343977);    p = fma(p, w, 4.8499064014085844221);  }  return p * x;}namespace {// Direct implementation of AS63, BETAIN()// https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.//// BETAIN(x, p, q, beta)//  x:     the value of the upper limit x.//  p:     the value of the parameter p.//  q:     the value of the parameter q.//  beta:  the value of ln B(p, q)//double BetaIncompleteImpl(const double x, const double p, const double q,                          const double beta) {  if (p < (p + q) * x) {    // Incomplete beta function is symmetrical, so return the complement.    return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);  }  double psq = p + q;  const double kErr = 1e-14;  const double xc = 1. - x;  const double pre =      std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;  double term = 1.;  double ai = 1.;  double result = 1.;  int ns = static_cast<int>(q + xc * psq);  // Use the soper reduction forumla.  double rx = (ns == 0) ? x : x / xc;  double temp = q - ai;  for (;;) {    term = term * temp * rx / (p + ai);    result = result + term;    temp = std::fabs(term);    if (temp < kErr && temp < kErr * result) {      return result * pre;    }    ai = ai + 1.;    --ns;    if (ns >= 0) {      temp = q - ai;      if (ns == 0) {        rx = x;      }    } else {      temp = psq;      psq = psq + 1.;    }  }  // NOTE: See also TOMS Alogrithm 708.  // http://www.netlib.org/toms/index.html  //  // NOTE: The NWSC library also includes BRATIO / ISUBX (p87)  // https://archive.org/details/DTIC_ADA261511/page/n75}// Direct implementation of AS109, XINBTA(p, q, beta, alpha)// https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents// https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents//// XINBTA(p, q, beta, alhpa)//  p:     the value of the parameter p.//  q:     the value of the parameter q.//  beta:  the value of ln B(p, q)//  alpha: the value of the lower tail area.//double BetaIncompleteInvImpl(const double p, const double q, const double beta,                             const double alpha) {  if (alpha < 0.5) {    // Inverse Incomplete beta function is symmetrical, return the complement.    return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);  }  const double kErr = 1e-14;  double value = kErr;  // Compute the initial estimate.  {    double r = std::sqrt(-std::log(alpha * alpha));    double y =        r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);    if (p > 1. && q > 1.) {      r = (y * y - 3.) / 6.;      double s = 1. / (p + p - 1.);      double t = 1. / (q + q - 1.);      double h = 2. / s + t;      double w =          y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));      value = p / (p + q * std::exp(w + w));    } else {      r = q + q;      double t = 1.0 / (9. * q);      double u = 1.0 - t + y * std::sqrt(t);      t = r * (u * u * u);      if (t <= 0) {        value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);      } else {        t = (4.0 * p + r - 2.0) / t;        if (t <= 1) {          value = std::exp((std::log(alpha * p) + beta) / p);        } else {          value = 1.0 - 2.0 / (t + 1.0);        }      }    }  }  // Solve for x using a modified newton-raphson method using the function  // BetaIncomplete.  {    value = std::max(value, kErr);    value = std::min(value, 1.0 - kErr);    const double r = 1.0 - p;    const double t = 1.0 - q;    double y;    double yprev = 0;    double sq = 1;    double prev = 1;    for (;;) {      if (value < 0 || value > 1.0) {        // Error case; value went infinite.        return std::numeric_limits<double>::infinity();      } else if (value == 0 || value == 1) {        y = value;      } else {        y = BetaIncompleteImpl(value, p, q, beta);        if (!std::isfinite(y)) {          return y;        }      }      y = (y - alpha) *          std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));      if (y * yprev <= 0) {        prev = std::max(sq, std::numeric_limits<double>::min());      }      double g = 1.0;      for (;;) {        const double adj = g * y;        const double adj_sq = adj * adj;        if (adj_sq >= prev) {          g = g / 3.0;          continue;        }        const double tx = value - adj;        if (tx < 0 || tx > 1) {          g = g / 3.0;          continue;        }        if (prev < kErr) {          return value;        }        if (y * y < kErr) {          return value;        }        if (tx == value) {          return value;        }        if (tx == 0 || tx == 1) {          g = g / 3.0;          continue;        }        value = tx;        yprev = y;        break;      }    }  }  // NOTES: See also: Asymptotic inversion of the incomplete beta function.  // https://core.ac.uk/download/pdf/82140723.pdf  //  // NOTE: See the Boost library documentation as well:  // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html}}  // namespacedouble BetaIncomplete(const double x, const double p, const double q) {  // Error cases.  if (p < 0 || q < 0 || x < 0 || x > 1.0) {    return std::numeric_limits<double>::infinity();  }  if (x == 0 || x == 1) {    return x;  }  // ln(Beta(p, q))  double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);  return BetaIncompleteImpl(x, p, q, beta);}double BetaIncompleteInv(const double p, const double q, const double alpha) {  // Error cases.  if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {    return std::numeric_limits<double>::infinity();  }  if (alpha == 0 || alpha == 1) {    return alpha;  }  // ln(Beta(p, q))  double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);  return BetaIncompleteInvImpl(p, q, beta, alpha);}// Given `num_trials` trials each with probability `p` of success, the// probability of no failures is `p^k`. To ensure the probability of a failure// is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function// computes `p` from that equation.double RequiredSuccessProbability(const double p_fail, const int num_trials) {  double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));  ABSL_ASSERT(p > 0);  return p;}double ZScore(double expected_mean, const DistributionMoments& moments) {  return (moments.mean - expected_mean) /         (std::sqrt(moments.variance) /          std::sqrt(static_cast<double>(moments.n)));}double MaxErrorTolerance(double acceptance_probability) {  double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);  const double max_err = InverseNormalSurvival(one_sided_pvalue);  ABSL_ASSERT(max_err > 0);  return max_err;}}  // namespace random_internal}  // namespace absl
 |