| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/internal/distribution_impl.h"#include "gtest/gtest.h"#include "absl/base/internal/bits.h"#include "absl/flags/flag.h"#include "absl/numeric/int128.h"ABSL_FLAG(int64_t, absl_random_test_trials, 50000,          "Number of trials for the probability tests.");using absl::random_internal::NegativeValueT;using absl::random_internal::PositiveValueT;using absl::random_internal::RandU64ToDouble;using absl::random_internal::RandU64ToFloat;using absl::random_internal::SignedValueT;namespace {TEST(DistributionImplTest, U64ToFloat_Positive_NoZero_Test) {  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<PositiveValueT, false>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f);  EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);  EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);}TEST(DistributionImplTest, U64ToFloat_Positive_Zero_Test) {  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<PositiveValueT, true>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), 0.0);  EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);  EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);}TEST(DistributionImplTest, U64ToFloat_Negative_NoZero_Test) {  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<NegativeValueT, false>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f);  EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f);  EXPECT_EQ(ToFloat(0x8000000000000000), -0.5);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);}TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) {  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<SignedValueT, false>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f);  EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);  EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f);  EXPECT_EQ(ToFloat(0x8000000000000000), -5.421010862e-20f);  EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);}TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) {  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<SignedValueT, true>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), 0);  EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);  EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f);  EXPECT_EQ(ToFloat(0x8000000000000000), 0);  EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);}TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) {  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<SignedValueT, true, 1>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), 0);  EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f);  EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 2 * 0.9999999404f);  EXPECT_EQ(ToFloat(0x8000000000000000), 0);  EXPECT_EQ(ToFloat(0x8000000000000001), 2 * -1.084202172e-19f);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f);}TEST(DistributionImplTest, U64ToFloatTest) {  auto ToFloat = [](uint64_t a) -> float {    return RandU64ToFloat<PositiveValueT, true>(a);  };  EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f);  EXPECT_EQ(ToFloat(0x8000000000000000), 0.5f);  EXPECT_EQ(ToFloat(0x8000000000000001), 0.5f);  EXPECT_EQ(ToFloat(0x800000FFFFFFFFFF), 0.5f);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);  EXPECT_GT(ToFloat(0x0000000000000001), 0.0f);  EXPECT_NE(ToFloat(0x7FFFFF0000000000), ToFloat(0x7FFFFEFFFFFFFFFF));  EXPECT_LT(ToFloat(0xFFFFFFFFFFFFFFFF), 1.0f);  int32_t two_to_24 = 1 << 24;  EXPECT_EQ(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24),            two_to_24 - 1);  EXPECT_NE(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24 * 2),            two_to_24 * 2 - 1);  EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFF0000000000));  EXPECT_NE(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFEFFFFFFFFFF));  EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF8000000000));  EXPECT_NE(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF7FFFFFFFFF));  EXPECT_EQ(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFC000000000));  EXPECT_NE(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFBFFFFFFFFF));  // For values where every bit counts, the values scale as multiples of the  // input.  for (int i = 0; i < 100; ++i) {    EXPECT_EQ(i * ToFloat(0x0000000000000001), ToFloat(i));  }  // For each i: value generated from (1 << i).  float exp_values[64];  exp_values[63] = 0.5f;  for (int i = 62; i >= 0; --i) exp_values[i] = 0.5f * exp_values[i + 1];  constexpr uint64_t one = 1;  for (int i = 0; i < 64; ++i) {    EXPECT_EQ(ToFloat(one << i), exp_values[i]);    for (int j = 1; j < FLT_MANT_DIG && i - j >= 0; ++j) {      EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]);      EXPECT_EQ(ToFloat((one << i) + (one << (i - j))),                exp_values[i] + exp_values[i - j]);    }    for (int j = FLT_MANT_DIG; i - j >= 0; ++j) {      EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]);      EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i]);    }  }}TEST(DistributionImplTest, U64ToDouble_Positive_NoZero_Test) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<PositiveValueT, false>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20);  EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);}TEST(DistributionImplTest, U64ToDouble_Positive_Zero_Test) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<PositiveValueT, true>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);  EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);}TEST(DistributionImplTest, U64ToDouble_Negative_NoZero_Test) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<NegativeValueT, false>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20);  EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0x8000000000000000), -0.5);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);}TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<SignedValueT, false>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978);  EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);}TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<SignedValueT, true>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 0);  EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978);  EXPECT_EQ(ToDouble(0x8000000000000000), 0);  EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);}TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<SignedValueT, true, -1>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 0);  EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2);  EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978 / 2);  EXPECT_EQ(ToDouble(0x8000000000000000), 0);  EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19 / 2);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2);}TEST(DistributionImplTest, U64ToDoubleTest) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<PositiveValueT, true>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);  EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);  EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x7fffffffffffffef), 0.499999999999999944489);  EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);  // For values > 0.5, RandU64ToDouble discards up to 11 bits. (64-53).  EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);  EXPECT_EQ(ToDouble(0x80000000000007FF), 0.5);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);  EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF));  EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFF), 1.0);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF800));  EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF7FF));  EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00));  EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFBFF));  EXPECT_EQ(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFE00));  EXPECT_NE(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFDFF));  EXPECT_EQ(ToDouble(0x1000000000000001), 0.0625);  EXPECT_EQ(ToDouble(0x2000000000000001), 0.125);  EXPECT_EQ(ToDouble(0x3000000000000001), 0.1875);  EXPECT_EQ(ToDouble(0x4000000000000001), 0.25);  EXPECT_EQ(ToDouble(0x5000000000000001), 0.3125);  EXPECT_EQ(ToDouble(0x6000000000000001), 0.375);  EXPECT_EQ(ToDouble(0x7000000000000001), 0.4375);  EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);  EXPECT_EQ(ToDouble(0x9000000000000001), 0.5625);  EXPECT_EQ(ToDouble(0xa000000000000001), 0.625);  EXPECT_EQ(ToDouble(0xb000000000000001), 0.6875);  EXPECT_EQ(ToDouble(0xc000000000000001), 0.75);  EXPECT_EQ(ToDouble(0xd000000000000001), 0.8125);  EXPECT_EQ(ToDouble(0xe000000000000001), 0.875);  EXPECT_EQ(ToDouble(0xf000000000000001), 0.9375);  // Large powers of 2.  int64_t two_to_53 = int64_t{1} << 53;  EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53),            two_to_53 - 1);  EXPECT_NE(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53 * 2),            two_to_53 * 2 - 1);  // For values where every bit counts, the values scale as multiples of the  // input.  for (int i = 0; i < 100; ++i) {    EXPECT_EQ(i * ToDouble(0x0000000000000001), ToDouble(i));  }  // For each i: value generated from (1 << i).  double exp_values[64];  exp_values[63] = 0.5;  for (int i = 62; i >= 0; --i) exp_values[i] = 0.5 * exp_values[i + 1];  constexpr uint64_t one = 1;  for (int i = 0; i < 64; ++i) {    EXPECT_EQ(ToDouble(one << i), exp_values[i]);    for (int j = 1; j < DBL_MANT_DIG && i - j >= 0; ++j) {      EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]);      EXPECT_EQ(ToDouble((one << i) + (one << (i - j))),                exp_values[i] + exp_values[i - j]);    }    for (int j = DBL_MANT_DIG; i - j >= 0; ++j) {      EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]);      EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i]);    }  }}TEST(DistributionImplTest, U64ToDoubleSignedTest) {  auto ToDouble = [](uint64_t a) {    return RandU64ToDouble<SignedValueT, false>(a);  };  EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20);  EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);  const double e_plus = ToDouble(0x0000000000000001);  const double e_minus = ToDouble(0x8000000000000001);  EXPECT_EQ(e_plus, 1.084202172485504434e-19);  EXPECT_EQ(e_minus, -1.084202172485504434e-19);  EXPECT_EQ(ToDouble(0x3fffffffffffffef), 0.499999999999999944489);  EXPECT_EQ(ToDouble(0xbfffffffffffffef), -0.499999999999999944489);  // For values > 0.5, RandU64ToDouble discards up to 10 bits. (63-53).  EXPECT_EQ(ToDouble(0x4000000000000000), 0.5);  EXPECT_EQ(ToDouble(0x4000000000000001), 0.5);  EXPECT_EQ(ToDouble(0x40000000000003FF), 0.5);  EXPECT_EQ(ToDouble(0xC000000000000000), -0.5);  EXPECT_EQ(ToDouble(0xC000000000000001), -0.5);  EXPECT_EQ(ToDouble(0xC0000000000003FF), -0.5);  EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFe), 0.999999999999999888978);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999999999888978);  EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF));  EXPECT_LT(ToDouble(0x7FFFFFFFFFFFFFFF), 1.0);  EXPECT_GT(ToDouble(0x7FFFFFFFFFFFFFFF), 0.9999999999);  EXPECT_GT(ToDouble(0xFFFFFFFFFFFFFFFe), -1.0);  EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999);  EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFFC00));  EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00));  EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFF3FF));  EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFF3FF));  EXPECT_EQ(ToDouble(0x1000000000000001), 0.125);  EXPECT_EQ(ToDouble(0x2000000000000001), 0.25);  EXPECT_EQ(ToDouble(0x3000000000000001), 0.375);  EXPECT_EQ(ToDouble(0x4000000000000001), 0.5);  EXPECT_EQ(ToDouble(0x5000000000000001), 0.625);  EXPECT_EQ(ToDouble(0x6000000000000001), 0.75);  EXPECT_EQ(ToDouble(0x7000000000000001), 0.875);  EXPECT_EQ(ToDouble(0x7800000000000001), 0.9375);  EXPECT_EQ(ToDouble(0x7c00000000000001), 0.96875);  EXPECT_EQ(ToDouble(0x7e00000000000001), 0.984375);  EXPECT_EQ(ToDouble(0x7f00000000000001), 0.9921875);  // 0x8000000000000000 ~= 0  EXPECT_EQ(ToDouble(0x9000000000000001), -0.125);  EXPECT_EQ(ToDouble(0xa000000000000001), -0.25);  EXPECT_EQ(ToDouble(0xb000000000000001), -0.375);  EXPECT_EQ(ToDouble(0xc000000000000001), -0.5);  EXPECT_EQ(ToDouble(0xd000000000000001), -0.625);  EXPECT_EQ(ToDouble(0xe000000000000001), -0.75);  EXPECT_EQ(ToDouble(0xf000000000000001), -0.875);  // Large powers of 2.  int64_t two_to_53 = int64_t{1} << 53;  EXPECT_EQ(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53),            two_to_53 - 1);  EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53),            -(two_to_53 - 1));  EXPECT_NE(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53 * 2),            two_to_53 * 2 - 1);  // For values where every bit counts, the values scale as multiples of the  // input.  for (int i = 1; i < 100; ++i) {    EXPECT_EQ(i * e_plus, ToDouble(i)) << i;    EXPECT_EQ(i * e_minus, ToDouble(0x8000000000000000 | i)) << i;  }}TEST(DistributionImplTest, ExhaustiveFloat) {  using absl::base_internal::CountLeadingZeros64;  auto ToFloat = [](uint64_t a) {    return RandU64ToFloat<PositiveValueT, true>(a);  };  // Rely on RandU64ToFloat generating values from greatest to least when  // supplied with uint64_t values from greatest (0xfff...) to least (0x0).  Thus,  // this algorithm stores the previous value, and if the new value is at  // greater than or equal to the previous value, then there is a collision in  // the generation algorithm.  //  // Use the computation below to convert the random value into a result:  //   double res = a() * (1.0f - sample) + b() * sample;  float last_f = 1.0, last_g = 2.0;  uint64_t f_collisions = 0, g_collisions = 0;  uint64_t f_unique = 0, g_unique = 0;  uint64_t total = 0;  auto count = [&](const float r) {    total++;    // `f` is mapped to the range [0, 1) (default)    const float f = 0.0f * (1.0f - r) + 1.0f * r;    if (f >= last_f) {      f_collisions++;    } else {      f_unique++;      last_f = f;    }    // `g` is mapped to the range [1, 2)    const float g = 1.0f * (1.0f - r) + 2.0f * r;    if (g >= last_g) {      g_collisions++;    } else {      g_unique++;      last_g = g;    }  };  size_t limit = absl::GetFlag(FLAGS_absl_random_test_trials);  // Generate all uint64_t which have unique floating point values.  // Counting down from 0xFFFFFFFFFFFFFFFFu ... 0x0u  uint64_t x = ~uint64_t(0);  for (; x != 0 && limit > 0;) {    constexpr int kDig = (64 - FLT_MANT_DIG);    // Set a decrement value & the next point at which to change    // the decrement value. By default these are 1, 0.    uint64_t dec = 1;    uint64_t chk = 0;    // Adjust decrement and check value based on how many leading 0    // bits are set in the current value.    const int clz = CountLeadingZeros64(x);    if (clz < kDig) {      dec <<= (kDig - clz);      chk = (~uint64_t(0)) >> (clz + 1);    }    for (; x > chk && limit > 0; x -= dec) {      count(ToFloat(x));      --limit;    }  }  static_assert(FLT_MANT_DIG == 24,                "The float type is expected to have a 24 bit mantissa.");  if (limit != 0) {    // There are between 2^28 and 2^29 unique values in the range [0, 1).  For    // the low values of x, there are 2^24 -1 unique values.  Once x > 2^24,    // there are 40 * 2^24 unique values. Thus:    // (2 + 4 + 8 ... + 2^23) + 40 * 2^23    EXPECT_LT(1 << 28, f_unique);    EXPECT_EQ((1 << 24) + 40 * (1 << 23) - 1, f_unique);    EXPECT_EQ(total, f_unique);    EXPECT_EQ(0, f_collisions);    // Expect at least 2^23 unique values for the range [1, 2)    EXPECT_LE(1 << 23, g_unique);    EXPECT_EQ(total - g_unique, g_collisions);  }}TEST(DistributionImplTest, MultiplyU64ToU128Test) {  using absl::random_internal::MultiplyU64ToU128;  constexpr uint64_t k1 = 1;  constexpr uint64_t kMax = ~static_cast<uint64_t>(0);  EXPECT_EQ(absl::uint128(0), MultiplyU64ToU128(0, 0));  // Max uint64  EXPECT_EQ(MultiplyU64ToU128(kMax, kMax),            absl::MakeUint128(0xfffffffffffffffe, 0x0000000000000001));  EXPECT_EQ(absl::MakeUint128(0, kMax), MultiplyU64ToU128(kMax, 1));  EXPECT_EQ(absl::MakeUint128(0, kMax), MultiplyU64ToU128(1, kMax));  for (int i = 0; i < 64; ++i) {    EXPECT_EQ(absl::MakeUint128(0, kMax) << i,              MultiplyU64ToU128(kMax, k1 << i));    EXPECT_EQ(absl::MakeUint128(0, kMax) << i,              MultiplyU64ToU128(k1 << i, kMax));  }  // 1-bit x 1-bit.  for (int i = 0; i < 64; ++i) {    for (int j = 0; j < 64; ++j) {      EXPECT_EQ(absl::MakeUint128(0, 1) << (i + j),                MultiplyU64ToU128(k1 << i, k1 << j));      EXPECT_EQ(absl::MakeUint128(0, 1) << (i + j),                MultiplyU64ToU128(k1 << i, k1 << j));    }  }  // Verified multiplies  EXPECT_EQ(MultiplyU64ToU128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888),            absl::MakeUint128(0xbbbb9e2692c5dddc, 0xc28f7531048d2c60));  EXPECT_EQ(MultiplyU64ToU128(0x0123456789abcdef, 0xfedcba9876543210),            absl::MakeUint128(0x0121fa00ad77d742, 0x2236d88fe5618cf0));  EXPECT_EQ(MultiplyU64ToU128(0x0123456789abcdef, 0xfdb97531eca86420),            absl::MakeUint128(0x0120ae99d26725fc, 0xce197f0ecac319e0));  EXPECT_EQ(MultiplyU64ToU128(0x97a87f4f261ba3f2, 0xfedcba9876543210),            absl::MakeUint128(0x96fbf1a8ae78d0ba, 0x5a6dd4b71f278320));  EXPECT_EQ(MultiplyU64ToU128(0xfedcba9876543210, 0xfdb97531eca86420),            absl::MakeUint128(0xfc98c6981a413e22, 0x342d0bbf48948200));}}  // namespace
 |