| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include <cinttypes>#include <random>#include <sstream>#include <vector>#include "gtest/gtest.h"#include "absl/random/random.h"template <typename T>void Use(T) {}TEST(Examples, Basic) {  absl::BitGen gen;  std::vector<int> objs = {10, 20, 30, 40, 50};  // Choose an element from a set.  auto elem = objs[absl::Uniform(gen, 0u, objs.size())];  Use(elem);  // Generate a uniform value between 1 and 6.  auto dice_roll = absl::Uniform<int>(absl::IntervalClosedClosed, gen, 1, 6);  Use(dice_roll);  // Generate a random byte.  auto byte = absl::Uniform<uint8_t>(gen);  Use(byte);  // Generate a fractional value from [0f, 1f).  auto fraction = absl::Uniform<float>(gen, 0, 1);  Use(fraction);  // Toss a fair coin; 50/50 probability.  bool coin_toss = absl::Bernoulli(gen, 0.5);  Use(coin_toss);  // Select a file size between 1k and 10MB, biased towards smaller file sizes.  auto file_size = absl::LogUniform<size_t>(gen, 1000, 10 * 1000 * 1000);  Use(file_size);  // Randomize (shuffle) a collection.  std::shuffle(std::begin(objs), std::end(objs), gen);}TEST(Examples, CreateingCorrelatedVariateSequences) {  // Unexpected PRNG correlation is often a source of bugs,  // so when using absl::BitGen it must be an intentional choice.  // NOTE: All of these only exhibit process-level stability.  // Create a correlated sequence from system entropy.  {    auto my_seed = absl::MakeSeedSeq();    absl::BitGen gen_1(my_seed);    absl::BitGen gen_2(my_seed);  // Produces same variates as gen_1.    EXPECT_EQ(absl::Bernoulli(gen_1, 0.5), absl::Bernoulli(gen_2, 0.5));    EXPECT_EQ(absl::Uniform<uint32_t>(gen_1), absl::Uniform<uint32_t>(gen_2));  }  // Create a correlated sequence from an existing URBG.  {    absl::BitGen gen;    auto my_seed = absl::CreateSeedSeqFrom(&gen);    absl::BitGen gen_1(my_seed);    absl::BitGen gen_2(my_seed);    EXPECT_EQ(absl::Bernoulli(gen_1, 0.5), absl::Bernoulli(gen_2, 0.5));    EXPECT_EQ(absl::Uniform<uint32_t>(gen_1), absl::Uniform<uint32_t>(gen_2));  }  // An alternate construction which uses user-supplied data  // instead of a random seed.  {    const char kData[] = "A simple seed string";    std::seed_seq my_seed(std::begin(kData), std::end(kData));    absl::BitGen gen_1(my_seed);    absl::BitGen gen_2(my_seed);    EXPECT_EQ(absl::Bernoulli(gen_1, 0.5), absl::Bernoulli(gen_2, 0.5));    EXPECT_EQ(absl::Uniform<uint32_t>(gen_1), absl::Uniform<uint32_t>(gen_2));  }}
 |