| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136 | // Copyright 2019 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: inlined_vector.h// -----------------------------------------------------------------------------//// This header file contains the declaration and definition of an "inlined// vector" which behaves in an equivalent fashion to a `std::vector`, except// that storage for small sequences of the vector are provided inline without// requiring any heap allocation.//// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of// its template parameters. Instances where `size() <= N` hold contained// elements in inline space. Typically `N` is very small so that sequences that// are expected to be short do not require allocations.//// An `absl::InlinedVector` does not usually require a specific allocator. If// the inlined vector grows beyond its initial constraints, it will need to// allocate (as any normal `std::vector` would). This is usually performed with// the default allocator (defined as `std::allocator<T>`). Optionally, a custom// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_#define ABSL_CONTAINER_INLINED_VECTOR_H_#include <algorithm>#include <cassert>#include <cstddef>#include <cstdlib>#include <cstring>#include <initializer_list>#include <iterator>#include <memory>#include <type_traits>#include <utility>#include "absl/algorithm/algorithm.h"#include "absl/base/internal/throw_delegate.h"#include "absl/base/optimization.h"#include "absl/base/port.h"#include "absl/container/internal/inlined_vector.h"#include "absl/memory/memory.h"namespace absl {// -----------------------------------------------------------------------------// InlinedVector// -----------------------------------------------------------------------------//// An `absl::InlinedVector` is designed to be a drop-in replacement for// `std::vector` for use cases where the vector's size is sufficiently small// that it can be inlined. If the inlined vector does grow beyond its estimated// capacity, it will trigger an initial allocation on the heap, and will behave// as a `std:vector`. The API of the `absl::InlinedVector` within this file is// designed to cover the same API footprint as covered by `std::vector`.template <typename T, size_t N, typename A = std::allocator<T>>class InlinedVector {  static_assert(      N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");  using Storage = inlined_vector_internal::Storage<T, N, A>;  using rvalue_reference = typename Storage::rvalue_reference;  using MoveIterator = typename Storage::MoveIterator;  using AllocatorTraits = typename Storage::AllocatorTraits;  using IsMemcpyOk = typename Storage::IsMemcpyOk;  template <typename Iterator>  using IteratorValueAdapter =      typename Storage::template IteratorValueAdapter<Iterator>;  using CopyValueAdapter = typename Storage::CopyValueAdapter;  using DefaultValueAdapter = typename Storage::DefaultValueAdapter;  template <typename Iterator>  using EnableIfAtLeastForwardIterator = absl::enable_if_t<      inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;  template <typename Iterator>  using DisableIfAtLeastForwardIterator = absl::enable_if_t<      !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>; public:  using allocator_type = typename Storage::allocator_type;  using value_type = typename Storage::value_type;  using pointer = typename Storage::pointer;  using const_pointer = typename Storage::const_pointer;  using reference = typename Storage::reference;  using const_reference = typename Storage::const_reference;  using size_type = typename Storage::size_type;  using difference_type = typename Storage::difference_type;  using iterator = typename Storage::iterator;  using const_iterator = typename Storage::const_iterator;  using reverse_iterator = typename Storage::reverse_iterator;  using const_reverse_iterator = typename Storage::const_reverse_iterator;  // ---------------------------------------------------------------------------  // InlinedVector Constructors and Destructor  // ---------------------------------------------------------------------------  // Creates an empty inlined vector with a value-initialized allocator.  InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}  // Creates an empty inlined vector with a specified allocator.  explicit InlinedVector(const allocator_type& alloc) noexcept      : storage_(alloc) {}  // Creates an inlined vector with `n` copies of `value_type()`.  explicit InlinedVector(size_type n,                         const allocator_type& alloc = allocator_type())      : storage_(alloc) {    storage_.Initialize(DefaultValueAdapter(), n);  }  // Creates an inlined vector with `n` copies of `v`.  InlinedVector(size_type n, const_reference v,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    storage_.Initialize(CopyValueAdapter(v), n);  }  // Creates an inlined vector of copies of the values in `list`.  InlinedVector(std::initializer_list<value_type> list,                const allocator_type& alloc = allocator_type())      : InlinedVector(list.begin(), list.end(), alloc) {}  // Creates an inlined vector with elements constructed from the provided  // forward iterator range [`first`, `last`).  //  // NOTE: The `enable_if` prevents ambiguous interpretation between a call to  // this constructor with two integral arguments and a call to the above  // `InlinedVector(size_type, const_reference)` constructor.  template <typename ForwardIterator,            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>  InlinedVector(ForwardIterator first, ForwardIterator last,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),                        std::distance(first, last));  }  // Creates an inlined vector with elements constructed from the provided input  // iterator range [`first`, `last`).  template <typename InputIterator,            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>  InlinedVector(InputIterator first, InputIterator last,                const allocator_type& alloc = allocator_type())      : storage_(alloc) {    std::copy(first, last, std::back_inserter(*this));  }  // Creates a copy of an `other` inlined vector using `other`'s allocator.  InlinedVector(const InlinedVector& other)      : InlinedVector(other, *other.storage_.GetAllocPtr()) {}  // Creates a copy of an `other` inlined vector using a specified allocator.  InlinedVector(const InlinedVector& other, const allocator_type& alloc)      : storage_(alloc) {    if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {      storage_.MemcpyFrom(other.storage_);    } else {      storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),                          other.size());    }  }  // Creates an inlined vector by moving in the contents of an `other` inlined  // vector without performing any allocations. If `other` contains allocated  // memory, the newly-created instance will take ownership of that memory  // (leaving `other` empty). However, if `other` does not contain allocated  // memory (i.e. is inlined), the new inlined vector will perform element-wise  // move construction of `other`'s elements.  //  // NOTE: since no allocation is performed for the inlined vector in either  // case, the `noexcept(...)` specification depends on whether moving the  // underlying objects can throw. We assume:  //  a) Move constructors should only throw due to allocation failure.  //  b) If `value_type`'s move constructor allocates, it uses the same  //     allocation function as the `InlinedVector`'s allocator. Thus, the move  //     constructor is non-throwing if the allocator is non-throwing or  //     `value_type`'s move constructor is specified as `noexcept`.  InlinedVector(InlinedVector&& other) noexcept(      absl::allocator_is_nothrow<allocator_type>::value ||      std::is_nothrow_move_constructible<value_type>::value)      : storage_(*other.storage_.GetAllocPtr()) {    if (IsMemcpyOk::value) {      storage_.MemcpyFrom(other.storage_);      other.storage_.SetInlinedSize(0);    } else if (other.storage_.GetIsAllocated()) {      storage_.SetAllocatedData(other.storage_.GetAllocatedData(),                                other.storage_.GetAllocatedCapacity());      storage_.SetAllocatedSize(other.storage_.GetSize());      other.storage_.SetInlinedSize(0);    } else {      IteratorValueAdapter<MoveIterator> other_values(          MoveIterator(other.storage_.GetInlinedData()));      inlined_vector_internal::ConstructElements(          storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,          other.storage_.GetSize());      storage_.SetInlinedSize(other.storage_.GetSize());    }  }  // Creates an inlined vector by moving in the contents of an `other` inlined  // vector, performing allocations with the specified `alloc` allocator. If  // `other`'s allocator is not equal to `alloc` and `other` contains allocated  // memory, this move constructor will create a new allocation.  //  // NOTE: since allocation is performed in this case, this constructor can  // only be `noexcept` if the specified allocator is also `noexcept`. If this  // is the case, or if `other` contains allocated memory, this constructor  // performs element-wise move construction of its contents.  //  // Only in the case where `other`'s allocator is equal to `alloc` and `other`  // contains allocated memory will the newly created inlined vector take  // ownership of `other`'s allocated memory.  InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(      absl::allocator_is_nothrow<allocator_type>::value)      : storage_(alloc) {    if (IsMemcpyOk::value) {      storage_.MemcpyFrom(other.storage_);      other.storage_.SetInlinedSize(0);    } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&               other.storage_.GetIsAllocated()) {      storage_.SetAllocatedData(other.storage_.GetAllocatedData(),                                other.storage_.GetAllocatedCapacity());      storage_.SetAllocatedSize(other.storage_.GetSize());      other.storage_.SetInlinedSize(0);    } else {      storage_.Initialize(          IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),          other.size());    }  }  ~InlinedVector() {}  // ---------------------------------------------------------------------------  // InlinedVector Member Accessors  // ---------------------------------------------------------------------------  // `InlinedVector::empty()`  //  // Checks if the inlined vector has no elements.  bool empty() const noexcept { return !size(); }  // `InlinedVector::size()`  //  // Returns the number of elements in the inlined vector.  size_type size() const noexcept { return storage_.GetSize(); }  // `InlinedVector::max_size()`  //  // Returns the maximum number of elements the vector can hold.  size_type max_size() const noexcept {    // One bit of the size storage is used to indicate whether the inlined    // vector is allocated. As a result, the maximum size of the container that    // we can express is half of the max for `size_type`.    return (std::numeric_limits<size_type>::max)() / 2;  }  // `InlinedVector::capacity()`  //  // Returns the number of elements that can be stored in the inlined vector  // without requiring a reallocation of underlying memory.  //  // NOTE: For most inlined vectors, `capacity()` should equal the template  // parameter `N`. For inlined vectors which exceed this capacity, they  // will no longer be inlined and `capacity()` will equal its capacity on the  // allocated heap.  size_type capacity() const noexcept {    return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()                                     : static_cast<size_type>(N);  }  // `InlinedVector::data()`  //  // Returns a `pointer` to elements of the inlined vector. This pointer can be  // used to access and modify the contained elements.  // Only results within the range [`0`, `size()`) are defined.  pointer data() noexcept {    return storage_.GetIsAllocated() ? storage_.GetAllocatedData()                                     : storage_.GetInlinedData();  }  // Overload of `InlinedVector::data()` to return a `const_pointer` to elements  // of the inlined vector. This pointer can be used to access (but not modify)  // the contained elements.  const_pointer data() const noexcept {    return storage_.GetIsAllocated() ? storage_.GetAllocatedData()                                     : storage_.GetInlinedData();  }  // `InlinedVector::operator[]()`  //  // Returns a `reference` to the `i`th element of the inlined vector using the  // array operator.  reference operator[](size_type i) {    assert(i < size());    return data()[i];  }  // Overload of `InlinedVector::operator[]()` to return a `const_reference` to  // the `i`th element of the inlined vector.  const_reference operator[](size_type i) const {    assert(i < size());    return data()[i];  }  // `InlinedVector::at()`  //  // Returns a `reference` to the `i`th element of the inlined vector.  reference at(size_type i) {    if (ABSL_PREDICT_FALSE(i >= size())) {      base_internal::ThrowStdOutOfRange(          "`InlinedVector::at(size_type)` failed bounds check");    }    return data()[i];  }  // Overload of `InlinedVector::at()` to return a `const_reference` to the  // `i`th element of the inlined vector.  const_reference at(size_type i) const {    if (ABSL_PREDICT_FALSE(i >= size())) {      base_internal::ThrowStdOutOfRange(          "`InlinedVector::at(size_type) const` failed bounds check");    }    return data()[i];  }  // `InlinedVector::front()`  //  // Returns a `reference` to the first element of the inlined vector.  reference front() {    assert(!empty());    return at(0);  }  // Overload of `InlinedVector::front()` returns a `const_reference` to the  // first element of the inlined vector.  const_reference front() const {    assert(!empty());    return at(0);  }  // `InlinedVector::back()`  //  // Returns a `reference` to the last element of the inlined vector.  reference back() {    assert(!empty());    return at(size() - 1);  }  // Overload of `InlinedVector::back()` to return a `const_reference` to the  // last element of the inlined vector.  const_reference back() const {    assert(!empty());    return at(size() - 1);  }  // `InlinedVector::begin()`  //  // Returns an `iterator` to the beginning of the inlined vector.  iterator begin() noexcept { return data(); }  // Overload of `InlinedVector::begin()` to return a `const_iterator` to  // the beginning of the inlined vector.  const_iterator begin() const noexcept { return data(); }  // `InlinedVector::end()`  //  // Returns an `iterator` to the end of the inlined vector.  iterator end() noexcept { return data() + size(); }  // Overload of `InlinedVector::end()` to return a `const_iterator` to the  // end of the inlined vector.  const_iterator end() const noexcept { return data() + size(); }  // `InlinedVector::cbegin()`  //  // Returns a `const_iterator` to the beginning of the inlined vector.  const_iterator cbegin() const noexcept { return begin(); }  // `InlinedVector::cend()`  //  // Returns a `const_iterator` to the end of the inlined vector.  const_iterator cend() const noexcept { return end(); }  // `InlinedVector::rbegin()`  //  // Returns a `reverse_iterator` from the end of the inlined vector.  reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }  // Overload of `InlinedVector::rbegin()` to return a  // `const_reverse_iterator` from the end of the inlined vector.  const_reverse_iterator rbegin() const noexcept {    return const_reverse_iterator(end());  }  // `InlinedVector::rend()`  //  // Returns a `reverse_iterator` from the beginning of the inlined vector.  reverse_iterator rend() noexcept { return reverse_iterator(begin()); }  // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`  // from the beginning of the inlined vector.  const_reverse_iterator rend() const noexcept {    return const_reverse_iterator(begin());  }  // `InlinedVector::crbegin()`  //  // Returns a `const_reverse_iterator` from the end of the inlined vector.  const_reverse_iterator crbegin() const noexcept { return rbegin(); }  // `InlinedVector::crend()`  //  // Returns a `const_reverse_iterator` from the beginning of the inlined  // vector.  const_reverse_iterator crend() const noexcept { return rend(); }  // `InlinedVector::get_allocator()`  //  // Returns a copy of the allocator of the inlined vector.  allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }  // ---------------------------------------------------------------------------  // InlinedVector Member Mutators  // ---------------------------------------------------------------------------  // `InlinedVector::operator=()`  //  // Replaces the contents of the inlined vector with copies of the elements in  // the provided `std::initializer_list`.  InlinedVector& operator=(std::initializer_list<value_type> list) {    assign(list.begin(), list.end());    return *this;  }  // Overload of `InlinedVector::operator=()` to replace the contents of the  // inlined vector with the contents of `other`.  InlinedVector& operator=(const InlinedVector& other) {    if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {      const_pointer other_data = other.data();      assign(other_data, other_data + other.size());    }    return *this;  }  // Overload of `InlinedVector::operator=()` to replace the contents of the  // inlined vector with the contents of `other`.  //  // NOTE: As a result of calling this overload, `other` may be empty or it's  // contents may be left in a moved-from state.  InlinedVector& operator=(InlinedVector&& other) {    if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;    if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {      inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),                                               size());      if (storage_.GetIsAllocated()) {        AllocatorTraits::deallocate(*storage_.GetAllocPtr(),                                    storage_.GetAllocatedData(),                                    storage_.GetAllocatedCapacity());      }      storage_.MemcpyFrom(other.storage_);      other.storage_.SetInlinedSize(0);    } else {      storage_.Assign(IteratorValueAdapter<MoveIterator>(                          MoveIterator(other.storage_.GetInlinedData())),                      other.size());    }    return *this;  }  // `InlinedVector::assign()`  //  // Replaces the contents of the inlined vector with `n` copies of `v`.  void assign(size_type n, const_reference v) {    storage_.Assign(CopyValueAdapter(v), n);  }  // Overload of `InlinedVector::assign()` to replace the contents of the  // inlined vector with copies of the values in the provided  // `std::initializer_list`.  void assign(std::initializer_list<value_type> list) {    assign(list.begin(), list.end());  }  // Overload of `InlinedVector::assign()` to replace the contents of the  // inlined vector with the forward iterator range [`first`, `last`).  template <typename ForwardIterator,            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>  void assign(ForwardIterator first, ForwardIterator last) {    storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),                    std::distance(first, last));  }  // Overload of `InlinedVector::assign()` to replace the contents of the  // inlined vector with the input iterator range [`first`, `last`).  template <typename InputIterator,            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>  void assign(InputIterator first, InputIterator last) {    size_type assign_index = 0;    for (; (assign_index < size()) && (first != last);         static_cast<void>(++assign_index), static_cast<void>(++first)) {      *(data() + assign_index) = *first;    }    erase(data() + assign_index, data() + size());    std::copy(first, last, std::back_inserter(*this));  }  // `InlinedVector::resize()`  //  // Resizes the inlined vector to contain `n` elements. If `n` is smaller than  // the inlined vector's current size, extra elements are destroyed. If `n` is  // larger than the initial size, new elements are value-initialized.  void resize(size_type n) {    size_type s = size();    if (n < s) {      erase(begin() + n, end());      return;    }    reserve(n);    assert(capacity() >= n);    // Fill new space with elements constructed in-place.    if (storage_.GetIsAllocated()) {      UninitializedFill(storage_.GetAllocatedData() + s,                        storage_.GetAllocatedData() + n);      storage_.SetAllocatedSize(n);    } else {      UninitializedFill(storage_.GetInlinedData() + s,                        storage_.GetInlinedData() + n);      storage_.SetInlinedSize(n);    }  }  // Overload of `InlinedVector::resize()` to resize the inlined vector to  // contain `n` elements where, if `n` is larger than `size()`, the new values  // will be copy-constructed from `v`.  void resize(size_type n, const_reference v) {    size_type s = size();    if (n < s) {      erase(begin() + n, end());      return;    }    reserve(n);    assert(capacity() >= n);    // Fill new space with copies of `v`.    if (storage_.GetIsAllocated()) {      UninitializedFill(storage_.GetAllocatedData() + s,                        storage_.GetAllocatedData() + n, v);      storage_.SetAllocatedSize(n);    } else {      UninitializedFill(storage_.GetInlinedData() + s,                        storage_.GetInlinedData() + n, v);      storage_.SetInlinedSize(n);    }  }  // `InlinedVector::insert()`  //  // Copies `v` into `pos`, returning an `iterator` pointing to the newly  // inserted element.  iterator insert(const_iterator pos, const_reference v) {    return emplace(pos, v);  }  // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning  // an iterator pointing to the newly inserted element.  iterator insert(const_iterator pos, rvalue_reference v) {    return emplace(pos, std::move(v));  }  // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies  // of `v` starting at `pos`. Returns an `iterator` pointing to the first of  // the newly inserted elements.  iterator insert(const_iterator pos, size_type n, const_reference v) {    assert(pos >= begin() && pos <= end());    if (ABSL_PREDICT_FALSE(n == 0)) {      return const_cast<iterator>(pos);    }    value_type copy = v;    std::pair<iterator, iterator> it_pair = ShiftRight(pos, n);    std::fill(it_pair.first, it_pair.second, copy);    UninitializedFill(it_pair.second, it_pair.first + n, copy);    return it_pair.first;  }  // Overload of `InlinedVector::insert()` for copying the contents of the  // `std::initializer_list` into the vector starting at `pos`. Returns an  // `iterator` pointing to the first of the newly inserted elements.  iterator insert(const_iterator pos, std::initializer_list<value_type> list) {    return insert(pos, list.begin(), list.end());  }  // Overload of `InlinedVector::insert()` for inserting elements constructed  // from the forward iterator range [`first`, `last`). Returns an `iterator`  // pointing to the first of the newly inserted elements.  //  // NOTE: The `enable_if` is intended to disambiguate the two three-argument  // overloads of `insert()`.  template <typename ForwardIterator,            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>  iterator insert(const_iterator pos, ForwardIterator first,                  ForwardIterator last) {    assert(pos >= begin() && pos <= end());    if (ABSL_PREDICT_FALSE(first == last)) {      return const_cast<iterator>(pos);    }    auto n = std::distance(first, last);    std::pair<iterator, iterator> it_pair = ShiftRight(pos, n);    size_type used_spots = it_pair.second - it_pair.first;    auto open_spot = std::next(first, used_spots);    std::copy(first, open_spot, it_pair.first);    UninitializedCopy(open_spot, last, it_pair.second);    return it_pair.first;  }  // Overload of `InlinedVector::insert()` for inserting elements constructed  // from the input iterator range [`first`, `last`). Returns an `iterator`  // pointing to the first of the newly inserted elements.  template <typename InputIterator,            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>  iterator insert(const_iterator pos, InputIterator first, InputIterator last) {    size_type initial_insert_index = std::distance(cbegin(), pos);    for (size_type insert_index = initial_insert_index; first != last;         static_cast<void>(++insert_index), static_cast<void>(++first)) {      insert(data() + insert_index, *first);    }    return iterator(data() + initial_insert_index);  }  // `InlinedVector::emplace()`  //  // Constructs and inserts an object in the inlined vector at the given `pos`,  // returning an `iterator` pointing to the newly emplaced element.  template <typename... Args>  iterator emplace(const_iterator pos, Args&&... args) {    assert(pos >= begin());    assert(pos <= end());    if (ABSL_PREDICT_FALSE(pos == end())) {      emplace_back(std::forward<Args>(args)...);      return end() - 1;    }    T new_t = T(std::forward<Args>(args)...);    auto range = ShiftRight(pos, 1);    if (range.first == range.second) {      // constructing into uninitialized memory      Construct(range.first, std::move(new_t));    } else {      // assigning into moved-from object      *range.first = T(std::move(new_t));    }    return range.first;  }  // `InlinedVector::emplace_back()`  //  // Constructs and appends a new element to the end of the inlined vector,  // returning a `reference` to the emplaced element.  template <typename... Args>  reference emplace_back(Args&&... args) {    size_type s = size();    if (ABSL_PREDICT_FALSE(s == capacity())) {      size_type new_capacity = 2 * capacity();      pointer new_data =          AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);      reference new_element =          Construct(new_data + s, std::forward<Args>(args)...);      UninitializedCopy(std::make_move_iterator(data()),                        std::make_move_iterator(data() + s), new_data);      ResetAllocation(new_data, new_capacity, s + 1);      return new_element;    } else {      pointer space;      if (storage_.GetIsAllocated()) {        storage_.SetAllocatedSize(s + 1);        space = storage_.GetAllocatedData();      } else {        storage_.SetInlinedSize(s + 1);        space = storage_.GetInlinedData();      }      return Construct(space + s, std::forward<Args>(args)...);    }  }  // `InlinedVector::push_back()`  //  // Appends a copy of `v` to the end of the inlined vector.  void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }  // Overload of `InlinedVector::push_back()` for moving `v` into a newly  // appended element.  void push_back(rvalue_reference v) {    static_cast<void>(emplace_back(std::move(v)));  }  // `InlinedVector::pop_back()`  //  // Destroys the element at the end of the inlined vector and shrinks the size  // by `1` (unless the inlined vector is empty, in which case this is a no-op).  void pop_back() noexcept {    assert(!empty());    AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));    storage_.SubtractSize(1);  }  // `InlinedVector::erase()`  //  // Erases the element at `pos` of the inlined vector, returning an `iterator`  // pointing to the first element following the erased element.  //  // NOTE: May return the end iterator, which is not dereferencable.  iterator erase(const_iterator pos) {    assert(pos >= begin());    assert(pos < end());    iterator position = const_cast<iterator>(pos);    std::move(position + 1, end(), position);    pop_back();    return position;  }  // Overload of `InlinedVector::erase()` for erasing all elements in the  // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing  // to the first element following the range erased or the end iterator if `to`  // was the end iterator.  iterator erase(const_iterator from, const_iterator to) {    assert(begin() <= from);    assert(from <= to);    assert(to <= end());    iterator range_start = const_cast<iterator>(from);    iterator range_end = const_cast<iterator>(to);    size_type s = size();    ptrdiff_t erase_gap = std::distance(range_start, range_end);    if (erase_gap > 0) {      pointer space;      if (storage_.GetIsAllocated()) {        space = storage_.GetAllocatedData();        storage_.SetAllocatedSize(s - erase_gap);      } else {        space = storage_.GetInlinedData();        storage_.SetInlinedSize(s - erase_gap);      }      std::move(range_end, space + s, range_start);      Destroy(space + s - erase_gap, space + s);    }    return range_start;  }  // `InlinedVector::clear()`  //  // Destroys all elements in the inlined vector, sets the size of `0` and  // deallocates the heap allocation if the inlined vector was allocated.  void clear() noexcept {    storage_.DestroyAndDeallocate();    storage_.SetInlinedSize(0);  }  // `InlinedVector::reserve()`  //  // Enlarges the underlying representation of the inlined vector so it can hold  // at least `n` elements. This method does not change `size()` or the actual  // contents of the vector.  //  // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no  // effects. Otherwise, `reserve()` will reallocate, performing an n-time  // element-wise move of everything contained.  void reserve(size_type n) {    if (n <= capacity()) {      return;    }    const size_type s = size();    size_type target = (std::max)(static_cast<size_type>(N), n);    size_type new_capacity = capacity();    while (new_capacity < target) {      new_capacity <<= 1;    }    pointer new_data =        AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);    UninitializedCopy(std::make_move_iterator(data()),                      std::make_move_iterator(data() + s), new_data);    ResetAllocation(new_data, new_capacity, s);  }  // `InlinedVector::shrink_to_fit()`  //  // Reduces memory usage by freeing unused memory. After this call, calls to  // `capacity()` will be equal to `max(N, size())`.  //  // If `size() <= N` and the elements are currently stored on the heap, they  // will be moved to the inlined storage and the heap memory will be  // deallocated.  //  // If `size() > N` and `size() < capacity()` the elements will be moved to a  // smaller heap allocation.  void shrink_to_fit() {    if (storage_.GetIsAllocated()) {      storage_.ShrinkToFit();    }  }  // `InlinedVector::swap()`  //  // Swaps the contents of this inlined vector with the contents of `other`.  void swap(InlinedVector& other) {    using std::swap;    if (ABSL_PREDICT_FALSE(this == std::addressof(other))) {      return;    }    bool is_allocated = storage_.GetIsAllocated();    bool other_is_allocated = other.storage_.GetIsAllocated();    if (is_allocated && other_is_allocated) {      // Both out of line, so just swap the tag, allocation, and allocator.      storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_));      storage_.SwapAllocatedSizeAndCapacity(std::addressof(other.storage_));      swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr());      return;    }    if (!is_allocated && !other_is_allocated) {      // Both inlined: swap up to smaller size, then move remaining elements.      InlinedVector* a = this;      InlinedVector* b = std::addressof(other);      if (size() < other.size()) {        swap(a, b);      }      const size_type a_size = a->size();      const size_type b_size = b->size();      assert(a_size >= b_size);      // `a` is larger. Swap the elements up to the smaller array size.      std::swap_ranges(a->storage_.GetInlinedData(),                       a->storage_.GetInlinedData() + b_size,                       b->storage_.GetInlinedData());      // Move the remaining elements:      //   [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`      b->UninitializedCopy(a->storage_.GetInlinedData() + b_size,                           a->storage_.GetInlinedData() + a_size,                           b->storage_.GetInlinedData() + b_size);      a->Destroy(a->storage_.GetInlinedData() + b_size,                 a->storage_.GetInlinedData() + a_size);      storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_));      swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr());      assert(b->size() == a_size);      assert(a->size() == b_size);      return;    }    // One is out of line, one is inline.    // We first move the elements from the inlined vector into the    // inlined space in the other vector.  We then put the other vector's    // pointer/capacity into the originally inlined vector and swap    // the tags.    InlinedVector* a = this;    InlinedVector* b = std::addressof(other);    if (a->storage_.GetIsAllocated()) {      swap(a, b);    }    assert(!a->storage_.GetIsAllocated());    assert(b->storage_.GetIsAllocated());    const size_type a_size = a->size();    const size_type b_size = b->size();    // In an optimized build, `b_size` would be unused.    static_cast<void>(b_size);    // Made Local copies of `size()`, these can now be swapped    a->storage_.SwapSizeAndIsAllocated(std::addressof(b->storage_));    // Copy out before `b`'s union gets clobbered by `inline_space`    pointer b_data = b->storage_.GetAllocatedData();    size_type b_capacity = b->storage_.GetAllocatedCapacity();    b->UninitializedCopy(a->storage_.GetInlinedData(),                         a->storage_.GetInlinedData() + a_size,                         b->storage_.GetInlinedData());    a->Destroy(a->storage_.GetInlinedData(),               a->storage_.GetInlinedData() + a_size);    a->storage_.SetAllocatedData(b_data, b_capacity);    if (*a->storage_.GetAllocPtr() != *b->storage_.GetAllocPtr()) {      swap(*a->storage_.GetAllocPtr(), *b->storage_.GetAllocPtr());    }    assert(b->size() == a_size);    assert(a->size() == b_size);  } private:  template <typename H, typename TheT, size_t TheN, typename TheA>  friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);  void ResetAllocation(pointer new_data, size_type new_capacity,                       size_type new_size) {    if (storage_.GetIsAllocated()) {      Destroy(storage_.GetAllocatedData(),              storage_.GetAllocatedData() + size());      assert(begin() == storage_.GetAllocatedData());      AllocatorTraits::deallocate(*storage_.GetAllocPtr(),                                  storage_.GetAllocatedData(),                                  storage_.GetAllocatedCapacity());    } else {      Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + size());    }    storage_.SetAllocatedData(new_data, new_capacity);    storage_.SetAllocatedSize(new_size);  }  template <typename... Args>  reference Construct(pointer p, Args&&... args) {    absl::allocator_traits<allocator_type>::construct(        *storage_.GetAllocPtr(), p, std::forward<Args>(args)...);    return *p;  }  template <typename Iterator>  void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {    for (; src != src_last; ++dst, ++src) Construct(dst, *src);  }  template <typename... Args>  void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {    for (; dst != dst_last; ++dst) Construct(dst, args...);  }  // Destroy [`from`, `to`) in place.  void Destroy(pointer from, pointer to) {    for (pointer cur = from; cur != to; ++cur) {      absl::allocator_traits<allocator_type>::destroy(*storage_.GetAllocPtr(),                                                      cur);    }#if !defined(NDEBUG)    // Overwrite unused memory with `0xab` so we can catch uninitialized usage.    // Cast to `void*` to tell the compiler that we don't care that we might be    // scribbling on a vtable pointer.    if (from != to) {      auto len = sizeof(value_type) * std::distance(from, to);      std::memset(reinterpret_cast<void*>(from), 0xab, len);    }#endif  // !defined(NDEBUG)  }  // Shift all elements from `position` to `end()` by `n` places to the right.  // If the vector needs to be enlarged, memory will be allocated.  // Returns `iterator`s pointing to the start of the previously-initialized  // portion and the start of the uninitialized portion of the created gap.  // The number of initialized spots is `pair.second - pair.first`. The number  // of raw spots is `n - (pair.second - pair.first)`.  //  // Updates the size of the InlinedVector internally.  std::pair<iterator, iterator> ShiftRight(const_iterator position,                                           size_type n) {    iterator start_used = const_cast<iterator>(position);    iterator start_raw = const_cast<iterator>(position);    size_type s = size();    size_type required_size = s + n;    if (required_size > capacity()) {      // Compute new capacity by repeatedly doubling current capacity      size_type new_capacity = capacity();      while (new_capacity < required_size) {        new_capacity <<= 1;      }      // Move everyone into the new allocation, leaving a gap of `n` for the      // requested shift.      pointer new_data =          AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity);      size_type index = position - begin();      UninitializedCopy(std::make_move_iterator(data()),                        std::make_move_iterator(data() + index), new_data);      UninitializedCopy(std::make_move_iterator(data() + index),                        std::make_move_iterator(data() + s),                        new_data + index + n);      ResetAllocation(new_data, new_capacity, s);      // New allocation means our iterator is invalid, so we'll recalculate.      // Since the entire gap is in new space, there's no used space to reuse.      start_raw = begin() + index;      start_used = start_raw;    } else {      // If we had enough space, it's a two-part move. Elements going into      // previously-unoccupied space need an `UninitializedCopy()`. Elements      // going into a previously-occupied space are just a `std::move()`.      iterator pos = const_cast<iterator>(position);      iterator raw_space = end();      size_type slots_in_used_space = raw_space - pos;      size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space);      size_type new_elements_in_raw_space = n - new_elements_in_used_space;      size_type old_elements_in_used_space =          slots_in_used_space - new_elements_in_used_space;      UninitializedCopy(          std::make_move_iterator(pos + old_elements_in_used_space),          std::make_move_iterator(raw_space),          raw_space + new_elements_in_raw_space);      std::move_backward(pos, pos + old_elements_in_used_space, raw_space);      // If the gap is entirely in raw space, the used space starts where the      // raw space starts, leaving no elements in used space. If the gap is      // entirely in used space, the raw space starts at the end of the gap,      // leaving all elements accounted for within the used space.      start_used = pos;      start_raw = pos + new_elements_in_used_space;    }    storage_.AddSize(n);    return std::make_pair(start_used, start_raw);  }  Storage storage_;};// -----------------------------------------------------------------------------// InlinedVector Non-Member Functions// -----------------------------------------------------------------------------// `swap()`//// Swaps the contents of two inlined vectors. This convenience function// simply calls `InlinedVector::swap()`.template <typename T, size_t N, typename A>void swap(absl::InlinedVector<T, N, A>& a,          absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {  a.swap(b);}// `operator==()`//// Tests the equivalency of the contents of two inlined vectors.template <typename T, size_t N, typename A>bool operator==(const absl::InlinedVector<T, N, A>& a,                const absl::InlinedVector<T, N, A>& b) {  auto a_data = a.data();  auto a_size = a.size();  auto b_data = b.data();  auto b_size = b.size();  return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size);}// `operator!=()`//// Tests the inequality of the contents of two inlined vectors.template <typename T, size_t N, typename A>bool operator!=(const absl::InlinedVector<T, N, A>& a,                const absl::InlinedVector<T, N, A>& b) {  return !(a == b);}// `operator<()`//// Tests whether the contents of one inlined vector are less than the contents// of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>bool operator<(const absl::InlinedVector<T, N, A>& a,               const absl::InlinedVector<T, N, A>& b) {  auto a_data = a.data();  auto a_size = a.size();  auto b_data = b.data();  auto b_size = b.size();  return std::lexicographical_compare(a_data, a_data + a_size, b_data,                                      b_data + b_size);}// `operator>()`//// Tests whether the contents of one inlined vector are greater than the// contents of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>bool operator>(const absl::InlinedVector<T, N, A>& a,               const absl::InlinedVector<T, N, A>& b) {  return b < a;}// `operator<=()`//// Tests whether the contents of one inlined vector are less than or equal to// the contents of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>bool operator<=(const absl::InlinedVector<T, N, A>& a,                const absl::InlinedVector<T, N, A>& b) {  return !(b < a);}// `operator>=()`//// Tests whether the contents of one inlined vector are greater than or equal to// the contents of another through a lexicographical comparison operation.template <typename T, size_t N, typename A>bool operator>=(const absl::InlinedVector<T, N, A>& a,                const absl::InlinedVector<T, N, A>& b) {  return !(a < b);}// `AbslHashValue()`//// Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally// call this function directly.template <typename H, typename TheT, size_t TheN, typename TheA>H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) {  auto a_data = a.data();  auto a_size = a.size();  return H::combine(H::combine_contiguous(std::move(h), a_data, a_size),                    a_size);}}  // namespace absl#endif  // ABSL_CONTAINER_INLINED_VECTOR_H_
 |