| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// For reference check out:// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling//// Note that we only have partial C++11 support yet.#include "absl/debugging/internal/demangle.h"#include <cstdint>#include <cstdio>#include <limits>namespace absl {ABSL_NAMESPACE_BEGINnamespace debugging_internal {typedef struct {  const char *abbrev;  const char *real_name;  // Number of arguments in <expression> context, or 0 if disallowed.  int arity;} AbbrevPair;// List of operators from Itanium C++ ABI.static const AbbrevPair kOperatorList[] = {    // New has special syntax (not currently supported).    {"nw", "new", 0},    {"na", "new[]", 0},    // Works except that the 'gs' prefix is not supported.    {"dl", "delete", 1},    {"da", "delete[]", 1},    {"ps", "+", 1},  // "positive"    {"ng", "-", 1},  // "negative"    {"ad", "&", 1},  // "address-of"    {"de", "*", 1},  // "dereference"    {"co", "~", 1},    {"pl", "+", 2},    {"mi", "-", 2},    {"ml", "*", 2},    {"dv", "/", 2},    {"rm", "%", 2},    {"an", "&", 2},    {"or", "|", 2},    {"eo", "^", 2},    {"aS", "=", 2},    {"pL", "+=", 2},    {"mI", "-=", 2},    {"mL", "*=", 2},    {"dV", "/=", 2},    {"rM", "%=", 2},    {"aN", "&=", 2},    {"oR", "|=", 2},    {"eO", "^=", 2},    {"ls", "<<", 2},    {"rs", ">>", 2},    {"lS", "<<=", 2},    {"rS", ">>=", 2},    {"eq", "==", 2},    {"ne", "!=", 2},    {"lt", "<", 2},    {"gt", ">", 2},    {"le", "<=", 2},    {"ge", ">=", 2},    {"nt", "!", 1},    {"aa", "&&", 2},    {"oo", "||", 2},    {"pp", "++", 1},    {"mm", "--", 1},    {"cm", ",", 2},    {"pm", "->*", 2},    {"pt", "->", 0},  // Special syntax    {"cl", "()", 0},  // Special syntax    {"ix", "[]", 2},    {"qu", "?", 3},    {"st", "sizeof", 0},  // Special syntax    {"sz", "sizeof", 1},  // Not a real operator name, but used in expressions.    {nullptr, nullptr, 0},};// List of builtin types from Itanium C++ ABI.//// Invariant: only one- or two-character type abbreviations here.static const AbbrevPair kBuiltinTypeList[] = {    {"v", "void", 0},    {"w", "wchar_t", 0},    {"b", "bool", 0},    {"c", "char", 0},    {"a", "signed char", 0},    {"h", "unsigned char", 0},    {"s", "short", 0},    {"t", "unsigned short", 0},    {"i", "int", 0},    {"j", "unsigned int", 0},    {"l", "long", 0},    {"m", "unsigned long", 0},    {"x", "long long", 0},    {"y", "unsigned long long", 0},    {"n", "__int128", 0},    {"o", "unsigned __int128", 0},    {"f", "float", 0},    {"d", "double", 0},    {"e", "long double", 0},    {"g", "__float128", 0},    {"z", "ellipsis", 0},    {"De", "decimal128", 0},      // IEEE 754r decimal floating point (128 bits)    {"Dd", "decimal64", 0},       // IEEE 754r decimal floating point (64 bits)    {"Dc", "decltype(auto)", 0},    {"Da", "auto", 0},    {"Dn", "std::nullptr_t", 0},  // i.e., decltype(nullptr)    {"Df", "decimal32", 0},       // IEEE 754r decimal floating point (32 bits)    {"Di", "char32_t", 0},    {"Du", "char8_t", 0},    {"Ds", "char16_t", 0},    {"Dh", "float16", 0},         // IEEE 754r half-precision float (16 bits)    {nullptr, nullptr, 0},};// List of substitutions Itanium C++ ABI.static const AbbrevPair kSubstitutionList[] = {    {"St", "", 0},    {"Sa", "allocator", 0},    {"Sb", "basic_string", 0},    // std::basic_string<char, std::char_traits<char>,std::allocator<char> >    {"Ss", "string", 0},    // std::basic_istream<char, std::char_traits<char> >    {"Si", "istream", 0},    // std::basic_ostream<char, std::char_traits<char> >    {"So", "ostream", 0},    // std::basic_iostream<char, std::char_traits<char> >    {"Sd", "iostream", 0},    {nullptr, nullptr, 0},};// State needed for demangling.  This struct is copied in almost every stack// frame, so every byte counts.typedef struct {  int mangled_idx;                   // Cursor of mangled name.  int out_cur_idx;                   // Cursor of output string.  int prev_name_idx;                 // For constructors/destructors.  signed int prev_name_length : 16;  // For constructors/destructors.  signed int nest_level : 15;        // For nested names.  unsigned int append : 1;           // Append flag.  // Note: for some reason MSVC can't pack "bool append : 1" into the same int  // with the above two fields, so we use an int instead.  Amusingly it can pack  // "signed bool" as expected, but relying on that to continue to be a legal  // type seems ill-advised (as it's illegal in at least clang).} ParseState;static_assert(sizeof(ParseState) == 4 * sizeof(int),              "unexpected size of ParseState");// One-off state for demangling that's not subject to backtracking -- either// constant data, data that's intentionally immune to backtracking (steps), or// data that would never be changed by backtracking anyway (recursion_depth).//// Only one copy of this exists for each call to Demangle, so the size of this// struct is nearly inconsequential.typedef struct {  const char *mangled_begin;  // Beginning of input string.  char *out;                  // Beginning of output string.  int out_end_idx;            // One past last allowed output character.  int recursion_depth;        // For stack exhaustion prevention.  int steps;               // Cap how much work we'll do, regardless of depth.  ParseState parse_state;  // Backtrackable state copied for most frames.} State;namespace {// Prevent deep recursion / stack exhaustion.// Also prevent unbounded handling of complex inputs.class ComplexityGuard { public:  explicit ComplexityGuard(State *state) : state_(state) {    ++state->recursion_depth;    ++state->steps;  }  ~ComplexityGuard() { --state_->recursion_depth; }  // 256 levels of recursion seems like a reasonable upper limit on depth.  // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:  // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."  static constexpr int kRecursionDepthLimit = 256;  // We're trying to pick a charitable upper-limit on how many parse steps are  // necessary to handle something that a human could actually make use of.  // This is mostly in place as a bound on how much work we'll do if we are  // asked to demangle an mangled name from an untrusted source, so it should be  // much larger than the largest expected symbol, but much smaller than the  // amount of work we can do in, e.g., a second.  //  // Some real-world symbols from an arbitrary binary started failing between  // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set  // the limit.  //  // Spending one second on 2^17 parse steps would require each step to take  // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in  // under a second.  static constexpr int kParseStepsLimit = 1 << 17;  bool IsTooComplex() const {    return state_->recursion_depth > kRecursionDepthLimit ||           state_->steps > kParseStepsLimit;  } private:  State *state_;};}  // namespace// We don't use strlen() in libc since it's not guaranteed to be async// signal safe.static size_t StrLen(const char *str) {  size_t len = 0;  while (*str != '\0') {    ++str;    ++len;  }  return len;}// Returns true if "str" has at least "n" characters remaining.static bool AtLeastNumCharsRemaining(const char *str, int n) {  for (int i = 0; i < n; ++i) {    if (str[i] == '\0') {      return false;    }  }  return true;}// Returns true if "str" has "prefix" as a prefix.static bool StrPrefix(const char *str, const char *prefix) {  size_t i = 0;  while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {    ++i;  }  return prefix[i] == '\0';  // Consumed everything in "prefix".}static void InitState(State *state, const char *mangled, char *out,                      int out_size) {  state->mangled_begin = mangled;  state->out = out;  state->out_end_idx = out_size;  state->recursion_depth = 0;  state->steps = 0;  state->parse_state.mangled_idx = 0;  state->parse_state.out_cur_idx = 0;  state->parse_state.prev_name_idx = 0;  state->parse_state.prev_name_length = -1;  state->parse_state.nest_level = -1;  state->parse_state.append = true;}static inline const char *RemainingInput(State *state) {  return &state->mangled_begin[state->parse_state.mangled_idx];}// Returns true and advances "mangled_idx" if we find "one_char_token"// at "mangled_idx" position.  It is assumed that "one_char_token" does// not contain '\0'.static bool ParseOneCharToken(State *state, const char one_char_token) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (RemainingInput(state)[0] == one_char_token) {    ++state->parse_state.mangled_idx;    return true;  }  return false;}// Returns true and advances "mangled_cur" if we find "two_char_token"// at "mangled_cur" position.  It is assumed that "two_char_token" does// not contain '\0'.static bool ParseTwoCharToken(State *state, const char *two_char_token) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (RemainingInput(state)[0] == two_char_token[0] &&      RemainingInput(state)[1] == two_char_token[1]) {    state->parse_state.mangled_idx += 2;    return true;  }  return false;}// Returns true and advances "mangled_cur" if we find any character in// "char_class" at "mangled_cur" position.static bool ParseCharClass(State *state, const char *char_class) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (RemainingInput(state)[0] == '\0') {    return false;  }  const char *p = char_class;  for (; *p != '\0'; ++p) {    if (RemainingInput(state)[0] == *p) {      ++state->parse_state.mangled_idx;      return true;    }  }  return false;}static bool ParseDigit(State *state, int *digit) {  char c = RemainingInput(state)[0];  if (ParseCharClass(state, "0123456789")) {    if (digit != nullptr) {      *digit = c - '0';    }    return true;  }  return false;}// This function is used for handling an optional non-terminal.static bool Optional(bool /*status*/) { return true; }// This function is used for handling <non-terminal>+ syntax.typedef bool (*ParseFunc)(State *);static bool OneOrMore(ParseFunc parse_func, State *state) {  if (parse_func(state)) {    while (parse_func(state)) {    }    return true;  }  return false;}// This function is used for handling <non-terminal>* syntax. The function// always returns true and must be followed by a termination token or a// terminating sequence not handled by parse_func (e.g.// ParseOneCharToken(state, 'E')).static bool ZeroOrMore(ParseFunc parse_func, State *state) {  while (parse_func(state)) {  }  return true;}// Append "str" at "out_cur_idx".  If there is an overflow, out_cur_idx is// set to out_end_idx+1.  The output string is ensured to// always terminate with '\0' as long as there is no overflow.static void Append(State *state, const char *const str, const int length) {  for (int i = 0; i < length; ++i) {    if (state->parse_state.out_cur_idx + 1 <        state->out_end_idx) {  // +1 for '\0'      state->out[state->parse_state.out_cur_idx++] = str[i];    } else {      // signal overflow      state->parse_state.out_cur_idx = state->out_end_idx + 1;      break;    }  }  if (state->parse_state.out_cur_idx < state->out_end_idx) {    state->out[state->parse_state.out_cur_idx] =        '\0';  // Terminate it with '\0'  }}// We don't use equivalents in libc to avoid locale issues.static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }static bool IsAlpha(char c) {  return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');}static bool IsDigit(char c) { return c >= '0' && c <= '9'; }// Returns true if "str" is a function clone suffix.  These suffixes are used// by GCC 4.5.x and later versions (and our locally-modified version of GCC// 4.4.x) to indicate functions which have been cloned during optimization.// We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.static bool IsFunctionCloneSuffix(const char *str) {  size_t i = 0;  while (str[i] != '\0') {    // Consume a single .<alpha>+.<digit>+ sequence.    if (str[i] != '.' || !IsAlpha(str[i + 1])) {      return false;    }    i += 2;    while (IsAlpha(str[i])) {      ++i;    }    if (str[i] != '.' || !IsDigit(str[i + 1])) {      return false;    }    i += 2;    while (IsDigit(str[i])) {      ++i;    }  }  return true;  // Consumed everything in "str".}static bool EndsWith(State *state, const char chr) {  return state->parse_state.out_cur_idx > 0 &&         state->parse_state.out_cur_idx < state->out_end_idx &&         chr == state->out[state->parse_state.out_cur_idx - 1];}// Append "str" with some tweaks, iff "append" state is true.static void MaybeAppendWithLength(State *state, const char *const str,                                  const int length) {  if (state->parse_state.append && length > 0) {    // Append a space if the output buffer ends with '<' and "str"    // starts with '<' to avoid <<<.    if (str[0] == '<' && EndsWith(state, '<')) {      Append(state, " ", 1);    }    // Remember the last identifier name for ctors/dtors,    // but only if we haven't yet overflown the buffer.    if (state->parse_state.out_cur_idx < state->out_end_idx &&        (IsAlpha(str[0]) || str[0] == '_')) {      state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;      state->parse_state.prev_name_length = length;    }    Append(state, str, length);  }}// Appends a positive decimal number to the output if appending is enabled.static bool MaybeAppendDecimal(State *state, unsigned int val) {  // Max {32-64}-bit unsigned int is 20 digits.  constexpr size_t kMaxLength = 20;  char buf[kMaxLength];  // We can't use itoa or sprintf as neither is specified to be  // async-signal-safe.  if (state->parse_state.append) {    // We can't have a one-before-the-beginning pointer, so instead start with    // one-past-the-end and manipulate one character before the pointer.    char *p = &buf[kMaxLength];    do {  // val=0 is the only input that should write a leading zero digit.      *--p = (val % 10) + '0';      val /= 10;    } while (p > buf && val != 0);    // 'p' landed on the last character we set.  How convenient.    Append(state, p, kMaxLength - (p - buf));  }  return true;}// A convenient wrapper around MaybeAppendWithLength().// Returns true so that it can be placed in "if" conditions.static bool MaybeAppend(State *state, const char *const str) {  if (state->parse_state.append) {    int length = StrLen(str);    MaybeAppendWithLength(state, str, length);  }  return true;}// This function is used for handling nested names.static bool EnterNestedName(State *state) {  state->parse_state.nest_level = 0;  return true;}// This function is used for handling nested names.static bool LeaveNestedName(State *state, int16_t prev_value) {  state->parse_state.nest_level = prev_value;  return true;}// Disable the append mode not to print function parameters, etc.static bool DisableAppend(State *state) {  state->parse_state.append = false;  return true;}// Restore the append mode to the previous state.static bool RestoreAppend(State *state, bool prev_value) {  state->parse_state.append = prev_value;  return true;}// Increase the nest level for nested names.static void MaybeIncreaseNestLevel(State *state) {  if (state->parse_state.nest_level > -1) {    ++state->parse_state.nest_level;  }}// Appends :: for nested names if necessary.static void MaybeAppendSeparator(State *state) {  if (state->parse_state.nest_level >= 1) {    MaybeAppend(state, "::");  }}// Cancel the last separator if necessary.static void MaybeCancelLastSeparator(State *state) {  if (state->parse_state.nest_level >= 1 && state->parse_state.append &&      state->parse_state.out_cur_idx >= 2) {    state->parse_state.out_cur_idx -= 2;    state->out[state->parse_state.out_cur_idx] = '\0';  }}// Returns true if the identifier of the given length pointed to by// "mangled_cur" is anonymous namespace.static bool IdentifierIsAnonymousNamespace(State *state, int length) {  // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".  static const char anon_prefix[] = "_GLOBAL__N_";  return (length > static_cast<int>(sizeof(anon_prefix) - 1) &&          StrPrefix(RemainingInput(state), anon_prefix));}// Forward declarations of our parsing functions.static bool ParseMangledName(State *state);static bool ParseEncoding(State *state);static bool ParseName(State *state);static bool ParseUnscopedName(State *state);static bool ParseNestedName(State *state);static bool ParsePrefix(State *state);static bool ParseUnqualifiedName(State *state);static bool ParseSourceName(State *state);static bool ParseLocalSourceName(State *state);static bool ParseUnnamedTypeName(State *state);static bool ParseNumber(State *state, int *number_out);static bool ParseFloatNumber(State *state);static bool ParseSeqId(State *state);static bool ParseIdentifier(State *state, int length);static bool ParseOperatorName(State *state, int *arity);static bool ParseSpecialName(State *state);static bool ParseCallOffset(State *state);static bool ParseNVOffset(State *state);static bool ParseVOffset(State *state);static bool ParseCtorDtorName(State *state);static bool ParseDecltype(State *state);static bool ParseType(State *state);static bool ParseCVQualifiers(State *state);static bool ParseBuiltinType(State *state);static bool ParseFunctionType(State *state);static bool ParseBareFunctionType(State *state);static bool ParseClassEnumType(State *state);static bool ParseArrayType(State *state);static bool ParsePointerToMemberType(State *state);static bool ParseTemplateParam(State *state);static bool ParseTemplateTemplateParam(State *state);static bool ParseTemplateArgs(State *state);static bool ParseTemplateArg(State *state);static bool ParseBaseUnresolvedName(State *state);static bool ParseUnresolvedName(State *state);static bool ParseExpression(State *state);static bool ParseExprPrimary(State *state);static bool ParseExprCastValue(State *state);static bool ParseLocalName(State *state);static bool ParseLocalNameSuffix(State *state);static bool ParseDiscriminator(State *state);static bool ParseSubstitution(State *state, bool accept_std);// Implementation note: the following code is a straightforward// translation of the Itanium C++ ABI defined in BNF with a couple of// exceptions.//// - Support GNU extensions not defined in the Itanium C++ ABI// - <prefix> and <template-prefix> are combined to avoid infinite loop// - Reorder patterns to shorten the code// - Reorder patterns to give greedier functions precedence//   We'll mark "Less greedy than" for these cases in the code//// Each parsing function changes the parse state and returns true on// success, or returns false and doesn't change the parse state (note:// the parse-steps counter increases regardless of success or failure).// To ensure that the parse state isn't changed in the latter case, we// save the original state before we call multiple parsing functions// consecutively with &&, and restore it if unsuccessful.  See// ParseEncoding() as an example of this convention.  We follow the// convention throughout the code.//// Originally we tried to do demangling without following the full ABI// syntax but it turned out we needed to follow the full syntax to// parse complicated cases like nested template arguments.  Note that// implementing a full-fledged demangler isn't trivial (libiberty's// cp-demangle.c has +4300 lines).//// Note that (foo) in <(foo) ...> is a modifier to be ignored.//// Reference:// - Itanium C++ ABI//   <https://mentorembedded.github.io/cxx-abi/abi.html#mangling>// <mangled-name> ::= _Z <encoding>static bool ParseMangledName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);}// <encoding> ::= <(function) name> <bare-function-type>//            ::= <(data) name>//            ::= <special-name>static bool ParseEncoding(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  // Implementing the first two productions together as <name>  // [<bare-function-type>] avoids exponential blowup of backtracking.  //  // Since Optional(...) can't fail, there's no need to copy the state for  // backtracking.  if (ParseName(state) && Optional(ParseBareFunctionType(state))) {    return true;  }  if (ParseSpecialName(state)) {    return true;  }  return false;}// <name> ::= <nested-name>//        ::= <unscoped-template-name> <template-args>//        ::= <unscoped-name>//        ::= <local-name>static bool ParseName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseNestedName(state) || ParseLocalName(state)) {    return true;  }  // We reorganize the productions to avoid re-parsing unscoped names.  // - Inline <unscoped-template-name> productions:  //   <name> ::= <substitution> <template-args>  //          ::= <unscoped-name> <template-args>  //          ::= <unscoped-name>  // - Merge the two productions that start with unscoped-name:  //   <name> ::= <unscoped-name> [<template-args>]  ParseState copy = state->parse_state;  // "std<...>" isn't a valid name.  if (ParseSubstitution(state, /*accept_std=*/false) &&      ParseTemplateArgs(state)) {    return true;  }  state->parse_state = copy;  // Note there's no need to restore state after this since only the first  // subparser can fail.  return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));}// <unscoped-name> ::= <unqualified-name>//                 ::= St <unqualified-name>static bool ParseUnscopedName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseUnqualifiedName(state)) {    return true;  }  ParseState copy = state->parse_state;  if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&      ParseUnqualifiedName(state)) {    return true;  }  state->parse_state = copy;  return false;}// <ref-qualifer> ::= R // lvalue method reference qualifier//                ::= O // rvalue method reference qualifierstatic inline bool ParseRefQualifier(State *state) {  return ParseCharClass(state, "OR");}// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>//                   <unqualified-name> E//               ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>//                   <template-args> Estatic bool ParseNestedName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&      Optional(ParseCVQualifiers(state)) &&      Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&      LeaveNestedName(state, copy.nest_level) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// This part is tricky.  If we literally translate them to code, we'll// end up infinite loop.  Hence we merge them to avoid the case.//// <prefix> ::= <prefix> <unqualified-name>//          ::= <template-prefix> <template-args>//          ::= <template-param>//          ::= <substitution>//          ::= # empty// <template-prefix> ::= <prefix> <(template) unqualified-name>//                   ::= <template-param>//                   ::= <substitution>static bool ParsePrefix(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  bool has_something = false;  while (true) {    MaybeAppendSeparator(state);    if (ParseTemplateParam(state) ||        ParseSubstitution(state, /*accept_std=*/true) ||        ParseUnscopedName(state) ||        (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {      has_something = true;      MaybeIncreaseNestLevel(state);      continue;    }    MaybeCancelLastSeparator(state);    if (has_something && ParseTemplateArgs(state)) {      return ParsePrefix(state);    } else {      break;    }  }  return true;}// <unqualified-name> ::= <operator-name>//                    ::= <ctor-dtor-name>//                    ::= <source-name>//                    ::= <local-source-name> // GCC extension; see below.//                    ::= <unnamed-type-name>static bool ParseUnqualifiedName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||          ParseSourceName(state) || ParseLocalSourceName(state) ||          ParseUnnamedTypeName(state));}// <source-name> ::= <positive length number> <identifier>static bool ParseSourceName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  int length = -1;  if (ParseNumber(state, &length) && ParseIdentifier(state, length)) {    return true;  }  state->parse_state = copy;  return false;}// <local-source-name> ::= L <source-name> [<discriminator>]//// References://   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775//   https://gcc.gnu.org/viewcvs?view=rev&revision=124467static bool ParseLocalSourceName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&      Optional(ParseDiscriminator(state))) {    return true;  }  state->parse_state = copy;  return false;}// <unnamed-type-name> ::= Ut [<(nonnegative) number>] _//                     ::= <closure-type-name>// <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _// <lambda-sig>        ::= <(parameter) type>+static bool ParseUnnamedTypeName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.  // Optionally parse the encoded value into 'which' and add 2 to get the index.  int which = -1;  // Unnamed type local to function or class.  if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&      which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.      ParseOneCharToken(state, '_')) {    MaybeAppend(state, "{unnamed type#");    MaybeAppendDecimal(state, 2 + which);    MaybeAppend(state, "}");    return true;  }  state->parse_state = copy;  // Closure type.  which = -1;  if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&      OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&      ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&      which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.      ParseOneCharToken(state, '_')) {    MaybeAppend(state, "{lambda()#");    MaybeAppendDecimal(state, 2 + which);    MaybeAppend(state, "}");    return true;  }  state->parse_state = copy;  return false;}// <number> ::= [n] <non-negative decimal integer>// If "number_out" is non-null, then *number_out is set to the value of the// parsed number on success.static bool ParseNumber(State *state, int *number_out) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  bool negative = false;  if (ParseOneCharToken(state, 'n')) {    negative = true;  }  const char *p = RemainingInput(state);  uint64_t number = 0;  for (; *p != '\0'; ++p) {    if (IsDigit(*p)) {      number = number * 10 + (*p - '0');    } else {      break;    }  }  // Apply the sign with uint64_t arithmetic so overflows aren't UB.  Gives  // "incorrect" results for out-of-range inputs, but negative values only  // appear for literals, which aren't printed.  if (negative) {    number = ~number + 1;  }  if (p != RemainingInput(state)) {  // Conversion succeeded.    state->parse_state.mangled_idx += p - RemainingInput(state);    if (number_out != nullptr) {      // Note: possibly truncate "number".      *number_out = number;    }    return true;  }  return false;}// Floating-point literals are encoded using a fixed-length lowercase// hexadecimal string.static bool ParseFloatNumber(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  const char *p = RemainingInput(state);  for (; *p != '\0'; ++p) {    if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {      break;    }  }  if (p != RemainingInput(state)) {  // Conversion succeeded.    state->parse_state.mangled_idx += p - RemainingInput(state);    return true;  }  return false;}// The <seq-id> is a sequence number in base 36,// using digits and upper case lettersstatic bool ParseSeqId(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  const char *p = RemainingInput(state);  for (; *p != '\0'; ++p) {    if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {      break;    }  }  if (p != RemainingInput(state)) {  // Conversion succeeded.    state->parse_state.mangled_idx += p - RemainingInput(state);    return true;  }  return false;}// <identifier> ::= <unqualified source code identifier> (of given length)static bool ParseIdentifier(State *state, int length) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) {    return false;  }  if (IdentifierIsAnonymousNamespace(state, length)) {    MaybeAppend(state, "(anonymous namespace)");  } else {    MaybeAppendWithLength(state, RemainingInput(state), length);  }  state->parse_state.mangled_idx += length;  return true;}// <operator-name> ::= nw, and other two letters cases//                 ::= cv <type>  # (cast)//                 ::= v  <digit> <source-name> # vendor extended operatorstatic bool ParseOperatorName(State *state, int *arity) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {    return false;  }  // First check with "cv" (cast) case.  ParseState copy = state->parse_state;  if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&      EnterNestedName(state) && ParseType(state) &&      LeaveNestedName(state, copy.nest_level)) {    if (arity != nullptr) {      *arity = 1;    }    return true;  }  state->parse_state = copy;  // Then vendor extended operators.  if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&      ParseSourceName(state)) {    return true;  }  state->parse_state = copy;  // Other operator names should start with a lower alphabet followed  // by a lower/upper alphabet.  if (!(IsLower(RemainingInput(state)[0]) &&        IsAlpha(RemainingInput(state)[1]))) {    return false;  }  // We may want to perform a binary search if we really need speed.  const AbbrevPair *p;  for (p = kOperatorList; p->abbrev != nullptr; ++p) {    if (RemainingInput(state)[0] == p->abbrev[0] &&        RemainingInput(state)[1] == p->abbrev[1]) {      if (arity != nullptr) {        *arity = p->arity;      }      MaybeAppend(state, "operator");      if (IsLower(*p->real_name)) {  // new, delete, etc.        MaybeAppend(state, " ");      }      MaybeAppend(state, p->real_name);      state->parse_state.mangled_idx += 2;      return true;    }  }  return false;}// <special-name> ::= TV <type>//                ::= TT <type>//                ::= TI <type>//                ::= TS <type>//                ::= TH <type>  # thread-local//                ::= Tc <call-offset> <call-offset> <(base) encoding>//                ::= GV <(object) name>//                ::= T <call-offset> <(base) encoding>// G++ extensions://                ::= TC <type> <(offset) number> _ <(base) type>//                ::= TF <type>//                ::= TJ <type>//                ::= GR <name>//                ::= GA <encoding>//                ::= Th <call-offset> <(base) encoding>//                ::= Tv <call-offset> <(base) encoding>//// Note: we don't care much about them since they don't appear in// stack traces.  The are special data.static bool ParseSpecialName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTISH") &&      ParseType(state)) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&      ParseCallOffset(state) && ParseEncoding(state)) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "GV") && ParseName(state)) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&      ParseEncoding(state)) {    return true;  }  state->parse_state = copy;  // G++ extensions  if (ParseTwoCharToken(state, "TC") && ParseType(state) &&      ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&      DisableAppend(state) && ParseType(state)) {    RestoreAppend(state, copy.append);    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&      ParseType(state)) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "GR") && ParseName(state)) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&      ParseCallOffset(state) && ParseEncoding(state)) {    return true;  }  state->parse_state = copy;  return false;}// <call-offset> ::= h <nv-offset> _//               ::= v <v-offset> _static bool ParseCallOffset(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&      ParseOneCharToken(state, '_')) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&      ParseOneCharToken(state, '_')) {    return true;  }  state->parse_state = copy;  return false;}// <nv-offset> ::= <(offset) number>static bool ParseNVOffset(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  return ParseNumber(state, nullptr);}// <v-offset>  ::= <(offset) number> _ <(virtual offset) number>static bool ParseVOffset(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&      ParseNumber(state, nullptr)) {    return true;  }  state->parse_state = copy;  return false;}// <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2// <base-class-type>//                  ::= D0 | D1 | D2// # GCC extensions: "unified" constructor/destructor.  See// #// https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847//                  ::= C4 | D4static bool ParseCtorDtorName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'C')) {    if (ParseCharClass(state, "1234")) {      const char *const prev_name =          state->out + state->parse_state.prev_name_idx;      MaybeAppendWithLength(state, prev_name,                            state->parse_state.prev_name_length);      return true;    } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") &&               ParseClassEnumType(state)) {      return true;    }  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {    const char *const prev_name = state->out + state->parse_state.prev_name_idx;    MaybeAppend(state, "~");    MaybeAppendWithLength(state, prev_name,                          state->parse_state.prev_name_length);    return true;  }  state->parse_state = copy;  return false;}// <decltype> ::= Dt <expression> E  # decltype of an id-expression or class//                                   # member access (C++0x)//            ::= DT <expression> E  # decltype of an expression (C++0x)static bool ParseDecltype(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&      ParseExpression(state) && ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// <type> ::= <CV-qualifiers> <type>//        ::= P <type>   # pointer-to//        ::= R <type>   # reference-to//        ::= O <type>   # rvalue reference-to (C++0x)//        ::= C <type>   # complex pair (C 2000)//        ::= G <type>   # imaginary (C 2000)//        ::= U <source-name> <type>  # vendor extended type qualifier//        ::= <builtin-type>//        ::= <function-type>//        ::= <class-enum-type>  # note: just an alias for <name>//        ::= <array-type>//        ::= <pointer-to-member-type>//        ::= <template-template-param> <template-args>//        ::= <template-param>//        ::= <decltype>//        ::= <substitution>//        ::= Dp <type>          # pack expansion of (C++0x)//        ::= Dv <num-elems> _   # GNU vector extension//static bool ParseType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  // We should check CV-qualifers, and PRGC things first.  //  // CV-qualifiers overlap with some operator names, but an operator name is not  // valid as a type.  To avoid an ambiguity that can lead to exponential time  // complexity, refuse to backtrack the CV-qualifiers.  //  // _Z4aoeuIrMvvE  //  => _Z 4aoeuI        rM  v     v   E  //         aoeu<operator%=, void, void>  //  => _Z 4aoeuI r Mv v              E  //         aoeu<void void::* restrict>  //  // By consuming the CV-qualifiers first, the former parse is disabled.  if (ParseCVQualifiers(state)) {    const bool result = ParseType(state);    if (!result) state->parse_state = copy;    return result;  }  state->parse_state = copy;  // Similarly, these tag characters can overlap with other <name>s resulting in  // two different parse prefixes that land on <template-args> in the same  // place, such as "C3r1xI...".  So, disable the "ctor-name = C3" parse by  // refusing to backtrack the tag characters.  if (ParseCharClass(state, "OPRCG")) {    const bool result = ParseType(state);    if (!result) state->parse_state = copy;    return result;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&      ParseType(state)) {    return true;  }  state->parse_state = copy;  if (ParseBuiltinType(state) || ParseFunctionType(state) ||      ParseClassEnumType(state) || ParseArrayType(state) ||      ParsePointerToMemberType(state) || ParseDecltype(state) ||      // "std" on its own isn't a type.      ParseSubstitution(state, /*accept_std=*/false)) {    return true;  }  if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {    return true;  }  state->parse_state = copy;  // Less greedy than <template-template-param> <template-args>.  if (ParseTemplateParam(state)) {    return true;  }  if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&      ParseOneCharToken(state, '_')) {    return true;  }  state->parse_state = copy;  return false;}// <CV-qualifiers> ::= [r] [V] [K]// We don't allow empty <CV-qualifiers> to avoid infinite loop in// ParseType().static bool ParseCVQualifiers(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  int num_cv_qualifiers = 0;  num_cv_qualifiers += ParseOneCharToken(state, 'r');  num_cv_qualifiers += ParseOneCharToken(state, 'V');  num_cv_qualifiers += ParseOneCharToken(state, 'K');  return num_cv_qualifiers > 0;}// <builtin-type> ::= v, etc.  # single-character builtin types//                ::= u <source-name>//                ::= Dd, etc.  # two-character builtin types//// Not supported://                ::= DF <number> _ # _FloatN (N bits)//static bool ParseBuiltinType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  const AbbrevPair *p;  for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {    // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.    if (p->abbrev[1] == '\0') {      if (ParseOneCharToken(state, p->abbrev[0])) {        MaybeAppend(state, p->real_name);        return true;      }    } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {      MaybeAppend(state, p->real_name);      return true;    }  }  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {    return true;  }  state->parse_state = copy;  return false;}//  <exception-spec> ::= Do                # non-throwing//                                           exception-specification (e.g.,//                                           noexcept, throw())//                   ::= DO <expression> E # computed (instantiation-dependent)//                                           noexcept//                   ::= Dw <type>+ E      # dynamic exception specification//                                           with instantiation-dependent typesstatic bool ParseExceptionSpec(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseTwoCharToken(state, "Do")) return true;  ParseState copy = state->parse_state;  if (ParseTwoCharToken(state, "DO") && ParseExpression(state) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// <function-type> ::= [exception-spec] F [Y] <bare-function-type> [O] Estatic bool ParseFunctionType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (Optional(ParseExceptionSpec(state)) && ParseOneCharToken(state, 'F') &&      Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&      Optional(ParseOneCharToken(state, 'O')) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// <bare-function-type> ::= <(signature) type>+static bool ParseBareFunctionType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  DisableAppend(state);  if (OneOrMore(ParseType, state)) {    RestoreAppend(state, copy.append);    MaybeAppend(state, "()");    return true;  }  state->parse_state = copy;  return false;}// <class-enum-type> ::= <name>static bool ParseClassEnumType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  return ParseName(state);}// <array-type> ::= A <(positive dimension) number> _ <(element) type>//              ::= A [<(dimension) expression>] _ <(element) type>static bool ParseArrayType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&      ParseOneCharToken(state, '_') && ParseType(state)) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&      ParseOneCharToken(state, '_') && ParseType(state)) {    return true;  }  state->parse_state = copy;  return false;}// <pointer-to-member-type> ::= M <(class) type> <(member) type>static bool ParsePointerToMemberType(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {    return true;  }  state->parse_state = copy;  return false;}// <template-param> ::= T_//                  ::= T <parameter-2 non-negative number> _static bool ParseTemplateParam(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseTwoCharToken(state, "T_")) {    MaybeAppend(state, "?");  // We don't support template substitutions.    return true;  }  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&      ParseOneCharToken(state, '_')) {    MaybeAppend(state, "?");  // We don't support template substitutions.    return true;  }  state->parse_state = copy;  return false;}// <template-template-param> ::= <template-param>//                           ::= <substitution>static bool ParseTemplateTemplateParam(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  return (ParseTemplateParam(state) ||          // "std" on its own isn't a template.          ParseSubstitution(state, /*accept_std=*/false));}// <template-args> ::= I <template-arg>+ Estatic bool ParseTemplateArgs(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  DisableAppend(state);  if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&      ParseOneCharToken(state, 'E')) {    RestoreAppend(state, copy.append);    MaybeAppend(state, "<>");    return true;  }  state->parse_state = copy;  return false;}// <template-arg>  ::= <type>//                 ::= <expr-primary>//                 ::= J <template-arg>* E        # argument pack//                 ::= X <expression> Estatic bool ParseTemplateArg(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  // There can be significant overlap between the following leading to  // exponential backtracking:  //  //   <expr-primary> ::= L <type> <expr-cast-value> E  //                 e.g. L 2xxIvE 1                 E  //   <type>         ==> <local-source-name> <template-args>  //                 e.g. L 2xx               IvE  //  // This means parsing an entire <type> twice, and <type> can contain  // <template-arg>, so this can generate exponential backtracking.  There is  // only overlap when the remaining input starts with "L <source-name>", so  // parse all cases that can start this way jointly to share the common prefix.  //  // We have:  //  //   <template-arg> ::= <type>  //                  ::= <expr-primary>  //  // First, drop all the productions of <type> that must start with something  // other than 'L'.  All that's left is <class-enum-type>; inline it.  //  //   <type> ::= <nested-name> # starts with 'N'  //          ::= <unscoped-name>  //          ::= <unscoped-template-name> <template-args>  //          ::= <local-name> # starts with 'Z'  //  // Drop and inline again:  //  //   <type> ::= <unscoped-name>  //          ::= <unscoped-name> <template-args>  //          ::= <substitution> <template-args> # starts with 'S'  //  // Merge the first two, inline <unscoped-name>, drop last:  //  //   <type> ::= <unqualified-name> [<template-args>]  //          ::= St <unqualified-name> [<template-args>] # starts with 'S'  //  // Drop and inline:  //  //   <type> ::= <operator-name> [<template-args>] # starts with lowercase  //          ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'  //          ::= <source-name> [<template-args>] # starts with digit  //          ::= <local-source-name> [<template-args>]  //          ::= <unnamed-type-name> [<template-args>] # starts with 'U'  //  // One more time:  //  //   <type> ::= L <source-name> [<template-args>]  //  // Likewise with <expr-primary>:  //  //   <expr-primary> ::= L <type> <expr-cast-value> E  //                  ::= LZ <encoding> E # cannot overlap; drop  //                  ::= L <mangled_name> E # cannot overlap; drop  //  // By similar reasoning as shown above, the only <type>s starting with  // <source-name> are "<source-name> [<template-args>]".  Inline this.  //  //   <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E  //  // Now inline both of these into <template-arg>:  //  //   <template-arg> ::= L <source-name> [<template-args>]  //                  ::= L <source-name> [<template-args>] <expr-cast-value> E  //  // Merge them and we're done:  //   <template-arg>  //     ::= L <source-name> [<template-args>] [<expr-cast-value> E]  if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {    copy = state->parse_state;    if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {      return true;    }    state->parse_state = copy;    return true;  }  // Now that the overlapping cases can't reach this code, we can safely call  // both of these.  if (ParseType(state) || ParseExprPrimary(state)) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// <unresolved-type> ::= <template-param> [<template-args>]//                   ::= <decltype>//                   ::= <substitution>static inline bool ParseUnresolvedType(State *state) {  // No ComplexityGuard because we don't copy the state in this stack frame.  return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||         ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);}// <simple-id> ::= <source-name> [<template-args>]static inline bool ParseSimpleId(State *state) {  // No ComplexityGuard because we don't copy the state in this stack frame.  // Note: <simple-id> cannot be followed by a parameter pack; see comment in  // ParseUnresolvedType.  return ParseSourceName(state) && Optional(ParseTemplateArgs(state));}// <base-unresolved-name> ::= <source-name> [<template-args>]//                        ::= on <operator-name> [<template-args>]//                        ::= dn <destructor-name>static bool ParseBaseUnresolvedName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseSimpleId(state)) {    return true;  }  ParseState copy = state->parse_state;  if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&      Optional(ParseTemplateArgs(state))) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "dn") &&      (ParseUnresolvedType(state) || ParseSimpleId(state))) {    return true;  }  state->parse_state = copy;  return false;}// <unresolved-name> ::= [gs] <base-unresolved-name>//                   ::= sr <unresolved-type> <base-unresolved-name>//                   ::= srN <unresolved-type> <unresolved-qualifier-level>+ E//                         <base-unresolved-name>//                   ::= [gs] sr <unresolved-qualifier-level>+ E//                         <base-unresolved-name>static bool ParseUnresolvedName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (Optional(ParseTwoCharToken(state, "gs")) &&      ParseBaseUnresolvedName(state)) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&      ParseBaseUnresolvedName(state)) {    return true;  }  state->parse_state = copy;  if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&      ParseUnresolvedType(state) &&      OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&      ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {    return true;  }  state->parse_state = copy;  if (Optional(ParseTwoCharToken(state, "gs")) &&      ParseTwoCharToken(state, "sr") &&      OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&      ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {    return true;  }  state->parse_state = copy;  return false;}// <expression> ::= <1-ary operator-name> <expression>//              ::= <2-ary operator-name> <expression> <expression>//              ::= <3-ary operator-name> <expression> <expression> <expression>//              ::= cl <expression>+ E//              ::= cv <type> <expression>      # type (expression)//              ::= cv <type> _ <expression>* E # type (expr-list)//              ::= st <type>//              ::= <template-param>//              ::= <function-param>//              ::= <expr-primary>//              ::= dt <expression> <unresolved-name> # expr.name//              ::= pt <expression> <unresolved-name> # expr->name//              ::= sp <expression>         # argument pack expansion//              ::= sr <type> <unqualified-name> <template-args>//              ::= sr <type> <unqualified-name>// <function-param> ::= fp <(top-level) CV-qualifiers> _//                  ::= fp <(top-level) CV-qualifiers> <number> _//                  ::= fL <number> p <(top-level) CV-qualifiers> _//                  ::= fL <number> p <(top-level) CV-qualifiers> <number> _static bool ParseExpression(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseTemplateParam(state) || ParseExprPrimary(state)) {    return true;  }  // Object/function call expression.  ParseState copy = state->parse_state;  if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  // Function-param expression (level 0).  if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&      Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {    return true;  }  state->parse_state = copy;  // Function-param expression (level 1+).  if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&      ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&      Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {    return true;  }  state->parse_state = copy;  // Parse the conversion expressions jointly to avoid re-parsing the <type> in  // their common prefix.  Parsed as:  // <expression> ::= cv <type> <conversion-args>  // <conversion-args> ::= _ <expression>* E  //                   ::= <expression>  //  // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName  // also needs to accept "cv <type>" in other contexts.  if (ParseTwoCharToken(state, "cv")) {    if (ParseType(state)) {      ParseState copy2 = state->parse_state;      if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&          ParseOneCharToken(state, 'E')) {        return true;      }      state->parse_state = copy2;      if (ParseExpression(state)) {        return true;      }    }  } else {    // Parse unary, binary, and ternary operator expressions jointly, taking    // care not to re-parse subexpressions repeatedly. Parse like:    //   <expression> ::= <operator-name> <expression>    //                    [<one-to-two-expressions>]    //   <one-to-two-expressions> ::= <expression> [<expression>]    int arity = -1;    if (ParseOperatorName(state, &arity) &&        arity > 0 &&  // 0 arity => disabled.        (arity < 3 || ParseExpression(state)) &&        (arity < 2 || ParseExpression(state)) &&        (arity < 1 || ParseExpression(state))) {      return true;    }  }  state->parse_state = copy;  // sizeof type  if (ParseTwoCharToken(state, "st") && ParseType(state)) {    return true;  }  state->parse_state = copy;  // Object and pointer member access expressions.  if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&      ParseExpression(state) && ParseType(state)) {    return true;  }  state->parse_state = copy;  // Pointer-to-member access expressions.  This parses the same as a binary  // operator, but it's implemented separately because "ds" shouldn't be  // accepted in other contexts that parse an operator name.  if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&      ParseExpression(state)) {    return true;  }  state->parse_state = copy;  // Parameter pack expansion  if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {    return true;  }  state->parse_state = copy;  return ParseUnresolvedName(state);}// <expr-primary> ::= L <type> <(value) number> E//                ::= L <type> <(value) float> E//                ::= L <mangled-name> E//                // A bug in g++'s C++ ABI version 2 (-fabi-version=2).//                ::= LZ <encoding> E//// Warning, subtle: the "bug" LZ production above is ambiguous with the first// production where <type> starts with <local-name>, which can lead to// exponential backtracking in two scenarios://// - When whatever follows the E in the <local-name> in the first production is//   not a name, we backtrack the whole <encoding> and re-parse the whole thing.//// - When whatever follows the <local-name> in the first production is not a//   number and this <expr-primary> may be followed by a name, we backtrack the//   <name> and re-parse it.//// Moreover this ambiguity isn't always resolved -- for example, the following// has two different parses:////   _ZaaILZ4aoeuE1x1EvE//   => operator&&<aoeu, x, E, void>//   => operator&&<(aoeu::x)(1), void>//// To resolve this, we just do what GCC's demangler does, and refuse to parse// casts to <local-name> types.static bool ParseExprPrimary(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"  // or fail, no backtracking.  if (ParseTwoCharToken(state, "LZ")) {    if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {      return true;    }    state->parse_state = copy;    return false;  }  // The merged cast production.  if (ParseOneCharToken(state, 'L') && ParseType(state) &&      ParseExprCastValue(state)) {    return true;  }  state->parse_state = copy;  if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&      ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// <number> or <float>, followed by 'E', as described above ParseExprPrimary.static bool ParseExprCastValue(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  // We have to be able to backtrack after accepting a number because we could  // have e.g. "7fffE", which will accept "7" as a number but then fail to find  // the 'E'.  ParseState copy = state->parse_state;  if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {    return true;  }  state->parse_state = copy;  return false;}// <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]//              ::= Z <(function) encoding> E s [<discriminator>]//// Parsing a common prefix of these two productions together avoids an// exponential blowup of backtracking.  Parse like://   <local-name> := Z <encoding> E <local-name-suffix>//   <local-name-suffix> ::= s [<discriminator>]//                       ::= <name> [<discriminator>]static bool ParseLocalNameSuffix(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (MaybeAppend(state, "::") && ParseName(state) &&      Optional(ParseDiscriminator(state))) {    return true;  }  // Since we're not going to overwrite the above "::" by re-parsing the  // <encoding> (whose trailing '\0' byte was in the byte now holding the  // first ':'), we have to rollback the "::" if the <name> parse failed.  if (state->parse_state.append) {    state->out[state->parse_state.out_cur_idx - 2] = '\0';  }  return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));}static bool ParseLocalName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&      ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {    return true;  }  state->parse_state = copy;  return false;}// <discriminator> := _ <(non-negative) number>static bool ParseDiscriminator(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {    return true;  }  state->parse_state = copy;  return false;}// <substitution> ::= S_//                ::= S <seq-id> _//                ::= St, etc.//// "St" is special in that it's not valid as a standalone name, and it *is*// allowed to precede a name without being wrapped in "N...E".  This means that// if we accept it on its own, we can accept "St1a" and try to parse// template-args, then fail and backtrack, accept "St" on its own, then "1a" as// an unqualified name and re-parse the same template-args.  To block this// exponential backtracking, we disable it with 'accept_std=false' in// problematic contexts.static bool ParseSubstitution(State *state, bool accept_std) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseTwoCharToken(state, "S_")) {    MaybeAppend(state, "?");  // We don't support substitutions.    return true;  }  ParseState copy = state->parse_state;  if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&      ParseOneCharToken(state, '_')) {    MaybeAppend(state, "?");  // We don't support substitutions.    return true;  }  state->parse_state = copy;  // Expand abbreviations like "St" => "std".  if (ParseOneCharToken(state, 'S')) {    const AbbrevPair *p;    for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {      if (RemainingInput(state)[0] == p->abbrev[1] &&          (accept_std || p->abbrev[1] != 't')) {        MaybeAppend(state, "std");        if (p->real_name[0] != '\0') {          MaybeAppend(state, "::");          MaybeAppend(state, p->real_name);        }        ++state->parse_state.mangled_idx;        return true;      }    }  }  state->parse_state = copy;  return false;}// Parse <mangled-name>, optionally followed by either a function-clone suffix// or version suffix.  Returns true only if all of "mangled_cur" was consumed.static bool ParseTopLevelMangledName(State *state) {  ComplexityGuard guard(state);  if (guard.IsTooComplex()) return false;  if (ParseMangledName(state)) {    if (RemainingInput(state)[0] != '\0') {      // Drop trailing function clone suffix, if any.      if (IsFunctionCloneSuffix(RemainingInput(state))) {        return true;      }      // Append trailing version suffix if any.      // ex. _Z3foo@@GLIBCXX_3.4      if (RemainingInput(state)[0] == '@') {        MaybeAppend(state, RemainingInput(state));        return true;      }      return false;  // Unconsumed suffix.    }    return true;  }  return false;}static bool Overflowed(const State *state) {  return state->parse_state.out_cur_idx >= state->out_end_idx;}// The demangler entry point.bool Demangle(const char *mangled, char *out, int out_size) {  State state;  InitState(&state, mangled, out, out_size);  return ParseTopLevelMangledName(&state) && !Overflowed(&state);}}  // namespace debugging_internalABSL_NAMESPACE_END}  // namespace absl
 |