| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: time.h// -----------------------------------------------------------------------------//// This header file defines abstractions for computing with absolute points// in time, durations of time, and formatting and parsing time within a given// time zone. The following abstractions are defined:////  * `absl::Time` defines an absolute, specific instance in time//  * `absl::Duration` defines a signed, fixed-length span of time//  * `absl::TimeZone` defines geopolitical time zone regions (as collected//     within the IANA Time Zone database (https://www.iana.org/time-zones)).//// Note: Absolute times are distinct from civil times, which refer to the// human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping// between absolute and civil times can be specified by use of time zones// (`absl::TimeZone` within this API). That is:////   Civil Time = F(Absolute Time, Time Zone)//   Absolute Time = G(Civil Time, Time Zone)//// See civil_time.h for abstractions related to constructing and manipulating// civil time.//// Example:////   absl::TimeZone nyc;//   // LoadTimeZone() may fail so it's always better to check for success.//   if (!absl::LoadTimeZone("America/New_York", &nyc)) {//      // handle error case//   }////   // My flight leaves NYC on Jan 2, 2017 at 03:04:05//   absl::CivilSecond cs(2017, 1, 2, 3, 4, 5);//   absl::Time takeoff = absl::FromCivil(cs, nyc);////   absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35);//   absl::Time landing = takeoff + flight_duration;////   absl::TimeZone syd;//   if (!absl::LoadTimeZone("Australia/Sydney", &syd)) {//      // handle error case//   }//   std::string s = absl::FormatTime(//       "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S",//       landing, syd);#ifndef ABSL_TIME_TIME_H_#define ABSL_TIME_TIME_H_#if !defined(_MSC_VER)#include <sys/time.h>#else// We don't include `winsock2.h` because it drags in `windows.h` and friends,// and they define conflicting macros like OPAQUE, ERROR, and more. This has the// potential to break Abseil users.//// Instead we only forward declare `timeval` and require Windows users include// `winsock2.h` themselves. This is both inconsistent and troublesome, but so is// including 'windows.h' so we are picking the lesser of two evils here.struct timeval;#endif#include <chrono>  // NOLINT(build/c++11)#include <cmath>#include <cstdint>#include <ctime>#include <ostream>#include <string>#include <type_traits>#include <utility>#include "absl/base/macros.h"#include "absl/strings/string_view.h"#include "absl/time/civil_time.h"#include "absl/time/internal/cctz/include/cctz/time_zone.h"namespace absl {ABSL_NAMESPACE_BEGINclass Duration;  // Defined belowclass Time;      // Defined belowclass TimeZone;  // Defined belownamespace time_internal {int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem);constexpr Time FromUnixDuration(Duration d);constexpr Duration ToUnixDuration(Time t);constexpr int64_t GetRepHi(Duration d);constexpr uint32_t GetRepLo(Duration d);constexpr Duration MakeDuration(int64_t hi, uint32_t lo);constexpr Duration MakeDuration(int64_t hi, int64_t lo);inline Duration MakePosDoubleDuration(double n);constexpr int64_t kTicksPerNanosecond = 4;constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;template <std::intmax_t N>constexpr Duration FromInt64(int64_t v, std::ratio<1, N>);constexpr Duration FromInt64(int64_t v, std::ratio<60>);constexpr Duration FromInt64(int64_t v, std::ratio<3600>);template <typename T>using EnableIfIntegral = typename std::enable_if<    std::is_integral<T>::value || std::is_enum<T>::value, int>::type;template <typename T>using EnableIfFloat =    typename std::enable_if<std::is_floating_point<T>::value, int>::type;}  // namespace time_internal// Duration//// The `absl::Duration` class represents a signed, fixed-length span of time.// A `Duration` is generated using a unit-specific factory function, or is// the result of subtracting one `absl::Time` from another. Durations behave// like unit-safe integers and they support all the natural integer-like// arithmetic operations. Arithmetic overflows and saturates at +/- infinity.// `Duration` should be passed by value rather than const reference.//// Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`,// `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for// creation of constexpr `Duration` values//// Examples:////   constexpr absl::Duration ten_ns = absl::Nanoseconds(10);//   constexpr absl::Duration min = absl::Minutes(1);//   constexpr absl::Duration hour = absl::Hours(1);//   absl::Duration dur = 60 * min;  // dur == hour//   absl::Duration half_sec = absl::Milliseconds(500);//   absl::Duration quarter_sec = 0.25 * absl::Seconds(1);//// `Duration` values can be easily converted to an integral number of units// using the division operator.//// Example:////   constexpr absl::Duration dur = absl::Milliseconds(1500);//   int64_t ns = dur / absl::Nanoseconds(1);   // ns == 1500000000//   int64_t ms = dur / absl::Milliseconds(1);  // ms == 1500//   int64_t sec = dur / absl::Seconds(1);    // sec == 1 (subseconds truncated)//   int64_t min = dur / absl::Minutes(1);    // min == 0//// See the `IDivDuration()` and `FDivDuration()` functions below for details on// how to access the fractional parts of the quotient.//// Alternatively, conversions can be performed using helpers such as// `ToInt64Microseconds()` and `ToDoubleSeconds()`.class Duration { public:  // Value semantics.  constexpr Duration() : rep_hi_(0), rep_lo_(0) {}  // zero-length duration  // Copyable.#if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910  // Explicitly defining the constexpr copy constructor avoids an MSVC bug.  constexpr Duration(const Duration& d)      : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {}#else  constexpr Duration(const Duration& d) = default;#endif  Duration& operator=(const Duration& d) = default;  // Compound assignment operators.  Duration& operator+=(Duration d);  Duration& operator-=(Duration d);  Duration& operator*=(int64_t r);  Duration& operator*=(double r);  Duration& operator/=(int64_t r);  Duration& operator/=(double r);  Duration& operator%=(Duration rhs);  // Overloads that forward to either the int64_t or double overloads above.  // Integer operands must be representable as int64_t.  template <typename T>  Duration& operator*=(T r) {    int64_t x = r;    return *this *= x;  }  template <typename T>  Duration& operator/=(T r) {    int64_t x = r;    return *this /= x;  }  Duration& operator*=(float r) { return *this *= static_cast<double>(r); }  Duration& operator/=(float r) { return *this /= static_cast<double>(r); }  template <typename H>  friend H AbslHashValue(H h, Duration d) {    return H::combine(std::move(h), d.rep_hi_, d.rep_lo_);  } private:  friend constexpr int64_t time_internal::GetRepHi(Duration d);  friend constexpr uint32_t time_internal::GetRepLo(Duration d);  friend constexpr Duration time_internal::MakeDuration(int64_t hi,                                                        uint32_t lo);  constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {}  int64_t rep_hi_;  uint32_t rep_lo_;};// Relational Operatorsconstexpr bool operator<(Duration lhs, Duration rhs);constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; }constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); }constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); }constexpr bool operator==(Duration lhs, Duration rhs);constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); }// Additive Operatorsconstexpr Duration operator-(Duration d);inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; }inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; }// Multiplicative Operators// Integer operands must be representable as int64_t.template <typename T>Duration operator*(Duration lhs, T rhs) {  return lhs *= rhs;}template <typename T>Duration operator*(T lhs, Duration rhs) {  return rhs *= lhs;}template <typename T>Duration operator/(Duration lhs, T rhs) {  return lhs /= rhs;}inline int64_t operator/(Duration lhs, Duration rhs) {  return time_internal::IDivDuration(true, lhs, rhs,                                     &lhs);  // trunc towards zero}inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; }// IDivDuration()//// Divides a numerator `Duration` by a denominator `Duration`, returning the// quotient and remainder. The remainder always has the same sign as the// numerator. The returned quotient and remainder respect the identity:////   numerator = denominator * quotient + remainder//// Returned quotients are capped to the range of `int64_t`, with the difference// spilling into the remainder to uphold the above identity. This means that the// remainder returned could differ from the remainder returned by// `Duration::operator%` for huge quotients.//// See also the notes on `InfiniteDuration()` below regarding the behavior of// division involving zero and infinite durations.//// Example:////   constexpr absl::Duration a =//       absl::Seconds(std::numeric_limits<int64_t>::max());  // big//   constexpr absl::Duration b = absl::Nanoseconds(1);       // small////   absl::Duration rem = a % b;//   // rem == absl::ZeroDuration()////   // Here, q would overflow int64_t, so rem accounts for the difference.//   int64_t q = absl::IDivDuration(a, b, &rem);//   // q == std::numeric_limits<int64_t>::max(), rem == a - b * qinline int64_t IDivDuration(Duration num, Duration den, Duration* rem) {  return time_internal::IDivDuration(true, num, den,                                     rem);  // trunc towards zero}// FDivDuration()//// Divides a `Duration` numerator into a fractional number of units of a// `Duration` denominator.//// See also the notes on `InfiniteDuration()` below regarding the behavior of// division involving zero and infinite durations.//// Example:////   double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1));//   // d == 1.5double FDivDuration(Duration num, Duration den);// ZeroDuration()//// Returns a zero-length duration. This function behaves just like the default// constructor, but the name helps make the semantics clear at call sites.constexpr Duration ZeroDuration() { return Duration(); }// AbsDuration()//// Returns the absolute value of a duration.inline Duration AbsDuration(Duration d) {  return (d < ZeroDuration()) ? -d : d;}// Trunc()//// Truncates a duration (toward zero) to a multiple of a non-zero unit.//// Example:////   absl::Duration d = absl::Nanoseconds(123456789);//   absl::Duration a = absl::Trunc(d, absl::Microseconds(1));  // 123456usDuration Trunc(Duration d, Duration unit);// Floor()//// Floors a duration using the passed duration unit to its largest value not// greater than the duration.//// Example:////   absl::Duration d = absl::Nanoseconds(123456789);//   absl::Duration b = absl::Floor(d, absl::Microseconds(1));  // 123456usDuration Floor(Duration d, Duration unit);// Ceil()//// Returns the ceiling of a duration using the passed duration unit to its// smallest value not less than the duration.//// Example:////   absl::Duration d = absl::Nanoseconds(123456789);//   absl::Duration c = absl::Ceil(d, absl::Microseconds(1));   // 123457usDuration Ceil(Duration d, Duration unit);// InfiniteDuration()//// Returns an infinite `Duration`.  To get a `Duration` representing negative// infinity, use `-InfiniteDuration()`.//// Duration arithmetic overflows to +/- infinity and saturates. In general,// arithmetic with `Duration` infinities is similar to IEEE 754 infinities// except where IEEE 754 NaN would be involved, in which case +/-// `InfiniteDuration()` is used in place of a "nan" Duration.//// Examples:////   constexpr absl::Duration inf = absl::InfiniteDuration();//   const absl::Duration d = ... any finite duration ...////   inf == inf + inf//   inf == inf + d//   inf == inf - inf//   -inf == d - inf////   inf == d * 1e100//   inf == inf / 2//   0 == d / inf//   INT64_MAX == inf / d////   d < inf//   -inf < d////   // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.//   inf == d / 0//   INT64_MAX == d / absl::ZeroDuration()//// The examples involving the `/` operator above also apply to `IDivDuration()`// and `FDivDuration()`.constexpr Duration InfiniteDuration();// Nanoseconds()// Microseconds()// Milliseconds()// Seconds()// Minutes()// Hours()//// Factory functions for constructing `Duration` values from an integral number// of the unit indicated by the factory function's name. The number must be// representable as int64_t.//// NOTE: no "Days()" factory function exists because "a day" is ambiguous.// Civil days are not always 24 hours long, and a 24-hour duration often does// not correspond with a civil day. If a 24-hour duration is needed, use// `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay// from civil_time.h.//// Example:////   absl::Duration a = absl::Seconds(60);//   absl::Duration b = absl::Minutes(1);  // b == aconstexpr Duration Nanoseconds(int64_t n);constexpr Duration Microseconds(int64_t n);constexpr Duration Milliseconds(int64_t n);constexpr Duration Seconds(int64_t n);constexpr Duration Minutes(int64_t n);constexpr Duration Hours(int64_t n);// Factory overloads for constructing `Duration` values from a floating-point// number of the unit indicated by the factory function's name. These functions// exist for convenience, but they are not as efficient as the integral// factories, which should be preferred.//// Example:////   auto a = absl::Seconds(1.5);        // OK//   auto b = absl::Milliseconds(1500);  // BETTERtemplate <typename T, time_internal::EnableIfFloat<T> = 0>Duration Nanoseconds(T n) {  return n * Nanoseconds(1);}template <typename T, time_internal::EnableIfFloat<T> = 0>Duration Microseconds(T n) {  return n * Microseconds(1);}template <typename T, time_internal::EnableIfFloat<T> = 0>Duration Milliseconds(T n) {  return n * Milliseconds(1);}template <typename T, time_internal::EnableIfFloat<T> = 0>Duration Seconds(T n) {  if (n >= 0) {  // Note: `NaN >= 0` is false.    if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) {      return InfiniteDuration();    }    return time_internal::MakePosDoubleDuration(n);  } else {    if (std::isnan(n))      return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration();    if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();    return -time_internal::MakePosDoubleDuration(-n);  }}template <typename T, time_internal::EnableIfFloat<T> = 0>Duration Minutes(T n) {  return n * Minutes(1);}template <typename T, time_internal::EnableIfFloat<T> = 0>Duration Hours(T n) {  return n * Hours(1);}// ToInt64Nanoseconds()// ToInt64Microseconds()// ToInt64Milliseconds()// ToInt64Seconds()// ToInt64Minutes()// ToInt64Hours()//// Helper functions that convert a Duration to an integral count of the// indicated unit. These functions are shorthand for the `IDivDuration()`// function above; see its documentation for details about overflow, etc.//// Example:////   absl::Duration d = absl::Milliseconds(1500);//   int64_t isec = absl::ToInt64Seconds(d);  // isec == 1int64_t ToInt64Nanoseconds(Duration d);int64_t ToInt64Microseconds(Duration d);int64_t ToInt64Milliseconds(Duration d);int64_t ToInt64Seconds(Duration d);int64_t ToInt64Minutes(Duration d);int64_t ToInt64Hours(Duration d);// ToDoubleNanoSeconds()// ToDoubleMicroseconds()// ToDoubleMilliseconds()// ToDoubleSeconds()// ToDoubleMinutes()// ToDoubleHours()//// Helper functions that convert a Duration to a floating point count of the// indicated unit. These functions are shorthand for the `FDivDuration()`// function above; see its documentation for details about overflow, etc.//// Example:////   absl::Duration d = absl::Milliseconds(1500);//   double dsec = absl::ToDoubleSeconds(d);  // dsec == 1.5double ToDoubleNanoseconds(Duration d);double ToDoubleMicroseconds(Duration d);double ToDoubleMilliseconds(Duration d);double ToDoubleSeconds(Duration d);double ToDoubleMinutes(Duration d);double ToDoubleHours(Duration d);// FromChrono()//// Converts any of the pre-defined std::chrono durations to an absl::Duration.//// Example:////   std::chrono::milliseconds ms(123);//   absl::Duration d = absl::FromChrono(ms);constexpr Duration FromChrono(const std::chrono::nanoseconds& d);constexpr Duration FromChrono(const std::chrono::microseconds& d);constexpr Duration FromChrono(const std::chrono::milliseconds& d);constexpr Duration FromChrono(const std::chrono::seconds& d);constexpr Duration FromChrono(const std::chrono::minutes& d);constexpr Duration FromChrono(const std::chrono::hours& d);// ToChronoNanoseconds()// ToChronoMicroseconds()// ToChronoMilliseconds()// ToChronoSeconds()// ToChronoMinutes()// ToChronoHours()//// Converts an absl::Duration to any of the pre-defined std::chrono durations.// If overflow would occur, the returned value will saturate at the min/max// chrono duration value instead.//// Example:////   absl::Duration d = absl::Microseconds(123);//   auto x = absl::ToChronoMicroseconds(d);//   auto y = absl::ToChronoNanoseconds(d);  // x == y//   auto z = absl::ToChronoSeconds(absl::InfiniteDuration());//   // z == std::chrono::seconds::max()std::chrono::nanoseconds ToChronoNanoseconds(Duration d);std::chrono::microseconds ToChronoMicroseconds(Duration d);std::chrono::milliseconds ToChronoMilliseconds(Duration d);std::chrono::seconds ToChronoSeconds(Duration d);std::chrono::minutes ToChronoMinutes(Duration d);std::chrono::hours ToChronoHours(Duration d);// FormatDuration()//// Returns a string representing the duration in the form "72h3m0.5s".// Returns "inf" or "-inf" for +/- `InfiniteDuration()`.std::string FormatDuration(Duration d);// Output stream operator.inline std::ostream& operator<<(std::ostream& os, Duration d) {  return os << FormatDuration(d);}// ParseDuration()//// Parses a duration string consisting of a possibly signed sequence of// decimal numbers, each with an optional fractional part and a unit// suffix.  The valid suffixes are "ns", "us" "ms", "s", "m", and "h".// Simple examples include "300ms", "-1.5h", and "2h45m".  Parses "0" as// `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.bool ParseDuration(const std::string& dur_string, Duration* d);// Support for flag values of type Duration. Duration flags must be specified// in a format that is valid input for absl::ParseDuration().bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error);std::string AbslUnparseFlag(Duration d);ABSL_DEPRECATED("Use AbslParseFlag() instead.")bool ParseFlag(const std::string& text, Duration* dst, std::string* error);ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")std::string UnparseFlag(Duration d);// Time//// An `absl::Time` represents a specific instant in time. Arithmetic operators// are provided for naturally expressing time calculations. Instances are// created using `absl::Now()` and the `absl::From*()` factory functions that// accept the gamut of other time representations. Formatting and parsing// functions are provided for conversion to and from strings.  `absl::Time`// should be passed by value rather than const reference.//// `absl::Time` assumes there are 60 seconds in a minute, which means the// underlying time scales must be "smeared" to eliminate leap seconds.// See https://developers.google.com/time/smear.//// Even though `absl::Time` supports a wide range of timestamps, exercise// caution when using values in the distant past. `absl::Time` uses the// Proleptic Gregorian calendar, which extends the Gregorian calendar backward// to dates before its introduction in 1582.// See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar// for more information. Use the ICU calendar classes to convert a date in// some other calendar (http://userguide.icu-project.org/datetime/calendar).//// Similarly, standardized time zones are a reasonably recent innovation, with// the Greenwich prime meridian being established in 1884. The TZ database// itself does not profess accurate offsets for timestamps prior to 1970. The// breakdown of future timestamps is subject to the whim of regional// governments.//// The `absl::Time` class represents an instant in time as a count of clock// ticks of some granularity (resolution) from some starting point (epoch).//// `absl::Time` uses a resolution that is high enough to avoid loss in// precision, and a range that is wide enough to avoid overflow, when// converting between tick counts in most Google time scales (i.e., resolution// of at least one nanosecond, and range +/-100 billion years).  Conversions// between the time scales are performed by truncating (towards negative// infinity) to the nearest representable point.//// Examples:////   absl::Time t1 = ...;//   absl::Time t2 = t1 + absl::Minutes(2);//   absl::Duration d = t2 - t1;  // == absl::Minutes(2)//class Time { public:  // Value semantics.  // Returns the Unix epoch.  However, those reading your code may not know  // or expect the Unix epoch as the default value, so make your code more  // readable by explicitly initializing all instances before use.  //  // Example:  //   absl::Time t = absl::UnixEpoch();  //   absl::Time t = absl::Now();  //   absl::Time t = absl::TimeFromTimeval(tv);  //   absl::Time t = absl::InfinitePast();  constexpr Time() = default;  // Copyable.  constexpr Time(const Time& t) = default;  Time& operator=(const Time& t) = default;  // Assignment operators.  Time& operator+=(Duration d) {    rep_ += d;    return *this;  }  Time& operator-=(Duration d) {    rep_ -= d;    return *this;  }  // Time::Breakdown  //  // The calendar and wall-clock (aka "civil time") components of an  // `absl::Time` in a certain `absl::TimeZone`. This struct is not  // intended to represent an instant in time. So, rather than passing  // a `Time::Breakdown` to a function, pass an `absl::Time` and an  // `absl::TimeZone`.  //  // Deprecated. Use `absl::TimeZone::CivilInfo`.  struct      Breakdown {    int64_t year;          // year (e.g., 2013)    int month;           // month of year [1:12]    int day;             // day of month [1:31]    int hour;            // hour of day [0:23]    int minute;          // minute of hour [0:59]    int second;          // second of minute [0:59]    Duration subsecond;  // [Seconds(0):Seconds(1)) if finite    int weekday;         // 1==Mon, ..., 7=Sun    int yearday;         // day of year [1:366]    // Note: The following fields exist for backward compatibility    // with older APIs.  Accessing these fields directly is a sign of    // imprudent logic in the calling code.  Modern time-related code    // should only access this data indirectly by way of FormatTime().    // These fields are undefined for InfiniteFuture() and InfinitePast().    int offset;             // seconds east of UTC    bool is_dst;            // is offset non-standard?    const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")  };  // Time::In()  //  // Returns the breakdown of this instant in the given TimeZone.  //  // Deprecated. Use `absl::TimeZone::At(Time)`.  Breakdown In(TimeZone tz) const;  template <typename H>  friend H AbslHashValue(H h, Time t) {    return H::combine(std::move(h), t.rep_);  } private:  friend constexpr Time time_internal::FromUnixDuration(Duration d);  friend constexpr Duration time_internal::ToUnixDuration(Time t);  friend constexpr bool operator<(Time lhs, Time rhs);  friend constexpr bool operator==(Time lhs, Time rhs);  friend Duration operator-(Time lhs, Time rhs);  friend constexpr Time UniversalEpoch();  friend constexpr Time InfiniteFuture();  friend constexpr Time InfinitePast();  constexpr explicit Time(Duration rep) : rep_(rep) {}  Duration rep_;};// Relational Operatorsconstexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; }constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; }constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); }constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); }constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; }constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); }// Additive Operatorsinline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; }inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; }inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; }inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; }// UnixEpoch()//// Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000".constexpr Time UnixEpoch() { return Time(); }// UniversalEpoch()//// Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the// epoch of the ICU Universal Time Scale.constexpr Time UniversalEpoch() {  // 719162 is the number of days from 0001-01-01 to 1970-01-01,  // assuming the Gregorian calendar.  return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U));}// InfiniteFuture()//// Returns an `absl::Time` that is infinitely far in the future.constexpr Time InfiniteFuture() {  return Time(      time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U));}// InfinitePast()//// Returns an `absl::Time` that is infinitely far in the past.constexpr Time InfinitePast() {  return Time(      time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U));}// FromUnixNanos()// FromUnixMicros()// FromUnixMillis()// FromUnixSeconds()// FromTimeT()// FromUDate()// FromUniversal()//// Creates an `absl::Time` from a variety of other representations.constexpr Time FromUnixNanos(int64_t ns);constexpr Time FromUnixMicros(int64_t us);constexpr Time FromUnixMillis(int64_t ms);constexpr Time FromUnixSeconds(int64_t s);constexpr Time FromTimeT(time_t t);Time FromUDate(double udate);Time FromUniversal(int64_t universal);// ToUnixNanos()// ToUnixMicros()// ToUnixMillis()// ToUnixSeconds()// ToTimeT()// ToUDate()// ToUniversal()//// Converts an `absl::Time` to a variety of other representations.  Note that// these operations round down toward negative infinity where necessary to// adjust to the resolution of the result type.  Beware of possible time_t// over/underflow in ToTime{T,val,spec}() on 32-bit platforms.int64_t ToUnixNanos(Time t);int64_t ToUnixMicros(Time t);int64_t ToUnixMillis(Time t);int64_t ToUnixSeconds(Time t);time_t ToTimeT(Time t);double ToUDate(Time t);int64_t ToUniversal(Time t);// DurationFromTimespec()// DurationFromTimeval()// ToTimespec()// ToTimeval()// TimeFromTimespec()// TimeFromTimeval()// ToTimespec()// ToTimeval()//// Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2)// and select(2)), while others use them as a Time (e.g. clock_gettime(2)// and gettimeofday(2)), so conversion functions are provided for both cases.// The "to timespec/val" direction is easily handled via overloading, but// for "from timespec/val" the desired type is part of the function name.Duration DurationFromTimespec(timespec ts);Duration DurationFromTimeval(timeval tv);timespec ToTimespec(Duration d);timeval ToTimeval(Duration d);Time TimeFromTimespec(timespec ts);Time TimeFromTimeval(timeval tv);timespec ToTimespec(Time t);timeval ToTimeval(Time t);// FromChrono()//// Converts a std::chrono::system_clock::time_point to an absl::Time.//// Example:////   auto tp = std::chrono::system_clock::from_time_t(123);//   absl::Time t = absl::FromChrono(tp);//   // t == absl::FromTimeT(123)Time FromChrono(const std::chrono::system_clock::time_point& tp);// ToChronoTime()//// Converts an absl::Time to a std::chrono::system_clock::time_point. If// overflow would occur, the returned value will saturate at the min/max time// point value instead.//// Example:////   absl::Time t = absl::FromTimeT(123);//   auto tp = absl::ToChronoTime(t);//   // tp == std::chrono::system_clock::from_time_t(123);std::chrono::system_clock::time_point ToChronoTime(Time);// Support for flag values of type Time. Time flags must be specified in a// format that matches absl::RFC3339_full. For example:////   --start_time=2016-01-02T03:04:05.678+08:00//// Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required.//// Additionally, if you'd like to specify a time as a count of// seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag// and add that duration to absl::UnixEpoch() to get an absl::Time.bool AbslParseFlag(absl::string_view text, Time* t, std::string* error);std::string AbslUnparseFlag(Time t);ABSL_DEPRECATED("Use AbslParseFlag() instead.")bool ParseFlag(const std::string& text, Time* t, std::string* error);ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")std::string UnparseFlag(Time t);// TimeZone//// The `absl::TimeZone` is an opaque, small, value-type class representing a// geo-political region within which particular rules are used for converting// between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone`// values are named using the TZ identifiers from the IANA Time Zone Database,// such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values// are created from factory functions such as `absl::LoadTimeZone()`. Note:// strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by// value rather than const reference.//// For more on the fundamental concepts of time zones, absolute times, and civil// times, see https://github.com/google/cctz#fundamental-concepts//// Examples:////   absl::TimeZone utc = absl::UTCTimeZone();//   absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60);//   absl::TimeZone loc = absl::LocalTimeZone();//   absl::TimeZone lax;//   if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) {//     // handle error case//   }//// See also:// - https://github.com/google/cctz// - https://www.iana.org/time-zones// - https://en.wikipedia.org/wiki/Zoneinfoclass TimeZone { public:  explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {}  TimeZone() = default;  // UTC, but prefer UTCTimeZone() to be explicit.  // Copyable.  TimeZone(const TimeZone&) = default;  TimeZone& operator=(const TimeZone&) = default;  explicit operator time_internal::cctz::time_zone() const { return cz_; }  std::string name() const { return cz_.name(); }  // TimeZone::CivilInfo  //  // Information about the civil time corresponding to an absolute time.  // This struct is not intended to represent an instant in time. So, rather  // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time`  // and an `absl::TimeZone`.  struct CivilInfo {    CivilSecond cs;    Duration subsecond;    // Note: The following fields exist for backward compatibility    // with older APIs.  Accessing these fields directly is a sign of    // imprudent logic in the calling code.  Modern time-related code    // should only access this data indirectly by way of FormatTime().    // These fields are undefined for InfiniteFuture() and InfinitePast().    int offset;             // seconds east of UTC    bool is_dst;            // is offset non-standard?    const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")  };  // TimeZone::At(Time)  //  // Returns the civil time for this TimeZone at a certain `absl::Time`.  // If the input time is infinite, the output civil second will be set to  // CivilSecond::max() or min(), and the subsecond will be infinite.  //  // Example:  //  //   const auto epoch = lax.At(absl::UnixEpoch());  //   // epoch.cs == 1969-12-31 16:00:00  //   // epoch.subsecond == absl::ZeroDuration()  //   // epoch.offset == -28800  //   // epoch.is_dst == false  //   // epoch.abbr == "PST"  CivilInfo At(Time t) const;  // TimeZone::TimeInfo  //  // Information about the absolute times corresponding to a civil time.  // (Subseconds must be handled separately.)  //  // It is possible for a caller to pass a civil-time value that does  // not represent an actual or unique instant in time (due to a shift  // in UTC offset in the TimeZone, which results in a discontinuity in  // the civil-time components). For example, a daylight-saving-time  // transition skips or repeats civil times---in the United States,  // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15  // occurred twice---so requests for such times are not well-defined.  // To account for these possibilities, `absl::TimeZone::TimeInfo` is  // richer than just a single `absl::Time`.  struct TimeInfo {    enum CivilKind {      UNIQUE,    // the civil time was singular (pre == trans == post)      SKIPPED,   // the civil time did not exist (pre >= trans > post)      REPEATED,  // the civil time was ambiguous (pre < trans <= post)    } kind;    Time pre;    // time calculated using the pre-transition offset    Time trans;  // when the civil-time discontinuity occurred    Time post;   // time calculated using the post-transition offset  };  // TimeZone::At(CivilSecond)  //  // Returns an `absl::TimeInfo` containing the absolute time(s) for this  // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or  // repeated, returns times calculated using the pre-transition and post-  // transition UTC offsets, plus the transition time itself.  //  // Examples:  //  //   // A unique civil time  //   const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0));  //   // jan01.kind == TimeZone::TimeInfo::UNIQUE  //   // jan01.pre    is 2011-01-01 00:00:00 -0800  //   // jan01.trans  is 2011-01-01 00:00:00 -0800  //   // jan01.post   is 2011-01-01 00:00:00 -0800  //  //   // A Spring DST transition, when there is a gap in civil time  //   const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0));  //   // mar13.kind == TimeZone::TimeInfo::SKIPPED  //   // mar13.pre   is 2011-03-13 03:15:00 -0700  //   // mar13.trans is 2011-03-13 03:00:00 -0700  //   // mar13.post  is 2011-03-13 01:15:00 -0800  //  //   // A Fall DST transition, when civil times are repeated  //   const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0));  //   // nov06.kind == TimeZone::TimeInfo::REPEATED  //   // nov06.pre   is 2011-11-06 01:15:00 -0700  //   // nov06.trans is 2011-11-06 01:00:00 -0800  //   // nov06.post  is 2011-11-06 01:15:00 -0800  TimeInfo At(CivilSecond ct) const;  // TimeZone::NextTransition()  // TimeZone::PrevTransition()  //  // Finds the time of the next/previous offset change in this time zone.  //  // By definition, `NextTransition(t, &trans)` returns false when `t` is  // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false  // when `t` is `InfinitePast()`. If the zone has no transitions, the  // result will also be false no matter what the argument.  //  // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)`  // returns true and sets `trans` to the first recorded transition. Chains  // of calls to `NextTransition()/PrevTransition()` will eventually return  // false, but it is unspecified exactly when `NextTransition(t, &trans)`  // jumps to false, or what time is set by `PrevTransition(t, &trans)` for  // a very distant `t`.  //  // Note: Enumeration of time-zone transitions is for informational purposes  // only. Modern time-related code should not care about when offset changes  // occur.  //  // Example:  //   absl::TimeZone nyc;  //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... }  //   const auto now = absl::Now();  //   auto t = absl::InfinitePast();  //   absl::TimeZone::CivilTransition trans;  //   while (t <= now && nyc.NextTransition(t, &trans)) {  //     // transition: trans.from -> trans.to  //     t = nyc.At(trans.to).trans;  //   }  struct CivilTransition {    CivilSecond from;  // the civil time we jump from    CivilSecond to;    // the civil time we jump to  };  bool NextTransition(Time t, CivilTransition* trans) const;  bool PrevTransition(Time t, CivilTransition* trans) const;  template <typename H>  friend H AbslHashValue(H h, TimeZone tz) {    return H::combine(std::move(h), tz.cz_);  } private:  friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; }  friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; }  friend std::ostream& operator<<(std::ostream& os, TimeZone tz) {    return os << tz.name();  }  time_internal::cctz::time_zone cz_;};// LoadTimeZone()//// Loads the named zone. May perform I/O on the initial load of the named// zone. If the name is invalid, or some other kind of error occurs, returns// `false` and `*tz` is set to the UTC time zone.inline bool LoadTimeZone(const std::string& name, TimeZone* tz) {  if (name == "localtime") {    *tz = TimeZone(time_internal::cctz::local_time_zone());    return true;  }  time_internal::cctz::time_zone cz;  const bool b = time_internal::cctz::load_time_zone(name, &cz);  *tz = TimeZone(cz);  return b;}// FixedTimeZone()//// Returns a TimeZone that is a fixed offset (seconds east) from UTC.// Note: If the absolute value of the offset is greater than 24 hours// you'll get UTC (i.e., no offset) instead.inline TimeZone FixedTimeZone(int seconds) {  return TimeZone(      time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds)));}// UTCTimeZone()//// Convenience method returning the UTC time zone.inline TimeZone UTCTimeZone() {  return TimeZone(time_internal::cctz::utc_time_zone());}// LocalTimeZone()//// Convenience method returning the local time zone, or UTC if there is// no configured local zone.  Warning: Be wary of using LocalTimeZone(),// and particularly so in a server process, as the zone configured for the// local machine should be irrelevant.  Prefer an explicit zone name.inline TimeZone LocalTimeZone() {  return TimeZone(time_internal::cctz::local_time_zone());}// ToCivilSecond()// ToCivilMinute()// ToCivilHour()// ToCivilDay()// ToCivilMonth()// ToCivilYear()//// Helpers for TimeZone::At(Time) to return particularly aligned civil times.//// Example:////   absl::Time t = ...;//   absl::TimeZone tz = ...;//   const auto cd = absl::ToCivilDay(t, tz);inline CivilSecond ToCivilSecond(Time t, TimeZone tz) {  return tz.At(t).cs;  // already a CivilSecond}inline CivilMinute ToCivilMinute(Time t, TimeZone tz) {  return CivilMinute(tz.At(t).cs);}inline CivilHour ToCivilHour(Time t, TimeZone tz) {  return CivilHour(tz.At(t).cs);}inline CivilDay ToCivilDay(Time t, TimeZone tz) {  return CivilDay(tz.At(t).cs);}inline CivilMonth ToCivilMonth(Time t, TimeZone tz) {  return CivilMonth(tz.At(t).cs);}inline CivilYear ToCivilYear(Time t, TimeZone tz) {  return CivilYear(tz.At(t).cs);}// FromCivil()//// Helper for TimeZone::At(CivilSecond) that provides "order-preserving// semantics." If the civil time maps to a unique time, that time is// returned. If the civil time is repeated in the given time zone, the// time using the pre-transition offset is returned. Otherwise, the// civil time is skipped in the given time zone, and the transition time// is returned. This means that for any two civil times, ct1 and ct2,// (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case// being when two non-existent civil times map to the same transition time.//// Note: Accepts civil times of any alignment.inline Time FromCivil(CivilSecond ct, TimeZone tz) {  const auto ti = tz.At(ct);  if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans;  return ti.pre;}// TimeConversion//// An `absl::TimeConversion` represents the conversion of year, month, day,// hour, minute, and second values (i.e., a civil time), in a particular// `absl::TimeZone`, to a time instant (an absolute time), as returned by// `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`.//// Deprecated. Use `absl::TimeZone::TimeInfo`.struct    TimeConversion {  Time pre;    // time calculated using the pre-transition offset  Time trans;  // when the civil-time discontinuity occurred  Time post;   // time calculated using the post-transition offset  enum Kind {    UNIQUE,    // the civil time was singular (pre == trans == post)    SKIPPED,   // the civil time did not exist    REPEATED,  // the civil time was ambiguous  };  Kind kind;  bool normalized;  // input values were outside their valid ranges};// ConvertDateTime()//// Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes// the civil time as six, separate values (YMDHMS).//// The input month, day, hour, minute, and second values can be outside// of their valid ranges, in which case they will be "normalized" during// the conversion.//// Example:////   // "October 32" normalizes to "November 1".//   absl::TimeConversion tc =//       absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax);//   // tc.kind == TimeConversion::UNIQUE && tc.normalized == true//   // absl::ToCivilDay(tc.pre, tz).month() == 11//   // absl::ToCivilDay(tc.pre, tz).day() == 1//// Deprecated. Use `absl::TimeZone::At(CivilSecond)`.TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,                               int min, int sec, TimeZone tz);// FromDateTime()//// A convenience wrapper for `absl::ConvertDateTime()` that simply returns// the "pre" `absl::Time`.  That is, the unique result, or the instant that// is correct using the pre-transition offset (as if the transition never// happened).//// Example:////   absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax);//   // t = 2017-09-26 09:30:00 -0700//// Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the// behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil// times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`.inline Time FromDateTime(int64_t year, int mon, int day, int hour,                         int min, int sec, TimeZone tz) {  return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre;}// FromTM()//// Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and// `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3)// for a description of the expected values of the tm fields. If the indicated// time instant is not unique (see `absl::TimeZone::At(absl::CivilSecond)`// above), the `tm_isdst` field is consulted to select the desired instant// (`tm_isdst` > 0 means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0// means use the post-transition offset).Time FromTM(const struct tm& tm, TimeZone tz);// ToTM()//// Converts the given `absl::Time` to a struct tm using the given time zone.// See ctime(3) for a description of the values of the tm fields.struct tm ToTM(Time t, TimeZone tz);// RFC3339_full// RFC3339_sec//// FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings,// with trailing zeros trimmed or with fractional seconds omitted altogether.//// Note that RFC3339_sec[] matches an ISO 8601 extended format for date and// time with UTC offset.  Also note the use of "%Y": RFC3339 mandates that// years have exactly four digits, but we allow them to take their natural// width.ABSL_DLL extern const char    RFC3339_full[];  // %Y-%m-%dT%H:%M:%E*S%EzABSL_DLL extern const char RFC3339_sec[];  // %Y-%m-%dT%H:%M:%S%Ez// RFC1123_full// RFC1123_no_wday//// FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings.ABSL_DLL extern const char    RFC1123_full[];  // %a, %d %b %E4Y %H:%M:%S %zABSL_DLL extern const char    RFC1123_no_wday[];  // %d %b %E4Y %H:%M:%S %z// FormatTime()//// Formats the given `absl::Time` in the `absl::TimeZone` according to the// provided format string. Uses strftime()-like formatting options, with// the following extensions:////   - %Ez  - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)//   - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)//   - %E#S - Seconds with # digits of fractional precision//   - %E*S - Seconds with full fractional precision (a literal '*')//   - %E#f - Fractional seconds with # digits of precision//   - %E*f - Fractional seconds with full precision (a literal '*')//   - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)//// Note that %E0S behaves like %S, and %E0f produces no characters.  In// contrast %E*f always produces at least one digit, which may be '0'.//// Note that %Y produces as many characters as it takes to fully render the// year.  A year outside of [-999:9999] when formatted with %E4Y will produce// more than four characters, just like %Y.//// We recommend that format strings include the UTC offset (%z, %Ez, or %E*z)// so that the result uniquely identifies a time instant.//// Example:////   absl::CivilSecond cs(2013, 1, 2, 3, 4, 5);//   absl::Time t = absl::FromCivil(cs, lax);//   std::string f = absl::FormatTime("%H:%M:%S", t, lax);  // "03:04:05"//   f = absl::FormatTime("%H:%M:%E3S", t, lax);  // "03:04:05.000"//// Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned// string will be exactly "infinite-future". If the given `absl::Time` is// `absl::InfinitePast()`, the returned string will be exactly "infinite-past".// In both cases the given format string and `absl::TimeZone` are ignored.//std::string FormatTime(const std::string& format, Time t, TimeZone tz);// Convenience functions that format the given time using the RFC3339_full// format.  The first overload uses the provided TimeZone, while the second// uses LocalTimeZone().std::string FormatTime(Time t, TimeZone tz);std::string FormatTime(Time t);// Output stream operator.inline std::ostream& operator<<(std::ostream& os, Time t) {  return os << FormatTime(t);}// ParseTime()//// Parses an input string according to the provided format string and// returns the corresponding `absl::Time`. Uses strftime()-like formatting// options, with the same extensions as FormatTime(), but with the// exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f.  %Ez// and %E*z also accept the same inputs.//// %Y consumes as many numeric characters as it can, so the matching data// should always be terminated with a non-numeric.  %E4Y always consumes// exactly four characters, including any sign.//// Unspecified fields are taken from the default date and time of ...////   "1970-01-01 00:00:00.0 +0000"//// For example, parsing a string of "15:45" (%H:%M) will return an absl::Time// that represents "1970-01-01 15:45:00.0 +0000".//// Note that since ParseTime() returns time instants, it makes the most sense// to parse fully-specified date/time strings that include a UTC offset (%z,// %Ez, or %E*z).//// Note also that `absl::ParseTime()` only heeds the fields year, month, day,// hour, minute, (fractional) second, and UTC offset.  Other fields, like// weekday (%a or %A), while parsed for syntactic validity, are ignored// in the conversion.//// Date and time fields that are out-of-range will be treated as errors// rather than normalizing them like `absl::CivilSecond` does.  For example,// it is an error to parse the date "Oct 32, 2013" because 32 is out of range.//// A leap second of ":60" is normalized to ":00" of the following minute// with fractional seconds discarded.  The following table shows how the// given seconds and subseconds will be parsed:////   "59.x" -> 59.x  // exact//   "60.x" -> 00.0  // normalized//   "00.x" -> 00.x  // exact//// Errors are indicated by returning false and assigning an error message// to the "err" out param if it is non-null.//// Note: If the input string is exactly "infinite-future", the returned// `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned.// If the input string is "infinite-past", the returned `absl::Time` will be// `absl::InfinitePast()` and `true` will be returned.//bool ParseTime(const std::string& format, const std::string& input, Time* time,               std::string* err);// Like ParseTime() above, but if the format string does not contain a UTC// offset specification (%z/%Ez/%E*z) then the input is interpreted in the// given TimeZone.  This means that the input, by itself, does not identify a// unique instant.  Being time-zone dependent, it also admits the possibility// of ambiguity or non-existence, in which case the "pre" time (as defined// by TimeZone::TimeInfo) is returned.  For these reasons we recommend that// all date/time strings include a UTC offset so they're context independent.bool ParseTime(const std::string& format, const std::string& input, TimeZone tz,               Time* time, std::string* err);// ============================================================================// Implementation Details Follow// ============================================================================namespace time_internal {// Creates a Duration with a given representation.// REQUIRES: hi,lo is a valid representation of a Duration as specified// in time/duration.cc.constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) {  return Duration(hi, lo);}constexpr Duration MakeDuration(int64_t hi, int64_t lo) {  return MakeDuration(hi, static_cast<uint32_t>(lo));}// Make a Duration value from a floating-point number, as long as that number// is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as// it's positive and can be converted to int64_t without risk of UB.inline Duration MakePosDoubleDuration(double n) {  const int64_t int_secs = static_cast<int64_t>(n);  const uint32_t ticks = static_cast<uint32_t>(      (n - static_cast<double>(int_secs)) * kTicksPerSecond + 0.5);  return ticks < kTicksPerSecond             ? MakeDuration(int_secs, ticks)             : MakeDuration(int_secs + 1, ticks - kTicksPerSecond);}// Creates a normalized Duration from an almost-normalized (sec,ticks)// pair. sec may be positive or negative.  ticks must be in the range// -kTicksPerSecond < *ticks < kTicksPerSecond.  If ticks is negative it// will be normalized to a positive value in the resulting Duration.constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) {  return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond)                     : MakeDuration(sec, ticks);}// Provide access to the Duration representation.constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; }constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; }// Returns true iff d is positive or negative infinity.constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; }// Returns an infinite Duration with the opposite sign.// REQUIRES: IsInfiniteDuration(d)constexpr Duration OppositeInfinity(Duration d) {  return GetRepHi(d) < 0             ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)             : MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U);}// Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.constexpr int64_t NegateAndSubtractOne(int64_t n) {  // Note: Good compilers will optimize this expression to ~n when using  // a two's-complement representation (which is required for int64_t).  return (n < 0) ? -(n + 1) : (-n) - 1;}// Map between a Time and a Duration since the Unix epoch.  Note that these// functions depend on the above mentioned choice of the Unix epoch for the// Time representation (and both need to be Time friends).  Without this// knowledge, we would need to add-in/subtract-out UnixEpoch() respectively.constexpr Time FromUnixDuration(Duration d) { return Time(d); }constexpr Duration ToUnixDuration(Time t) { return t.rep_; }template <std::intmax_t N>constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) {  static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio");  // Subsecond ratios cannot overflow.  return MakeNormalizedDuration(      v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);}constexpr Duration FromInt64(int64_t v, std::ratio<60>) {  return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&          v >= (std::numeric_limits<int64_t>::min)() / 60)             ? MakeDuration(v * 60)             : v > 0 ? InfiniteDuration() : -InfiniteDuration();}constexpr Duration FromInt64(int64_t v, std::ratio<3600>) {  return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&          v >= (std::numeric_limits<int64_t>::min)() / 3600)             ? MakeDuration(v * 3600)             : v > 0 ? InfiniteDuration() : -InfiniteDuration();}// IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is// valid. That is, if a T can be assigned to an int64_t without narrowing.template <typename T>constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) {  return true;}template <typename T>constexpr auto IsValidRep64(char) -> bool {  return false;}// Converts a std::chrono::duration to an absl::Duration.template <typename Rep, typename Period>constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) {  static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");  return FromInt64(int64_t{d.count()}, Period{});}template <typename Ratio>int64_t ToInt64(Duration d, Ratio) {  // Note: This may be used on MSVC, which may have a system_clock period of  // std::ratio<1, 10 * 1000 * 1000>  return ToInt64Seconds(d * Ratio::den / Ratio::num);}// Fastpath implementations for the 6 common duration units.inline int64_t ToInt64(Duration d, std::nano) {  return ToInt64Nanoseconds(d);}inline int64_t ToInt64(Duration d, std::micro) {  return ToInt64Microseconds(d);}inline int64_t ToInt64(Duration d, std::milli) {  return ToInt64Milliseconds(d);}inline int64_t ToInt64(Duration d, std::ratio<1>) {  return ToInt64Seconds(d);}inline int64_t ToInt64(Duration d, std::ratio<60>) {  return ToInt64Minutes(d);}inline int64_t ToInt64(Duration d, std::ratio<3600>) {  return ToInt64Hours(d);}// Converts an absl::Duration to a chrono duration of type T.template <typename T>T ToChronoDuration(Duration d) {  using Rep = typename T::rep;  using Period = typename T::period;  static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");  if (time_internal::IsInfiniteDuration(d))    return d < ZeroDuration() ? (T::min)() : (T::max)();  const auto v = ToInt64(d, Period{});  if (v > (std::numeric_limits<Rep>::max)()) return (T::max)();  if (v < (std::numeric_limits<Rep>::min)()) return (T::min)();  return T{v};}}  // namespace time_internalconstexpr Duration Nanoseconds(int64_t n) {  return time_internal::FromInt64(n, std::nano{});}constexpr Duration Microseconds(int64_t n) {  return time_internal::FromInt64(n, std::micro{});}constexpr Duration Milliseconds(int64_t n) {  return time_internal::FromInt64(n, std::milli{});}constexpr Duration Seconds(int64_t n) {  return time_internal::FromInt64(n, std::ratio<1>{});}constexpr Duration Minutes(int64_t n) {  return time_internal::FromInt64(n, std::ratio<60>{});}constexpr Duration Hours(int64_t n) {  return time_internal::FromInt64(n, std::ratio<3600>{});}constexpr bool operator<(Duration lhs, Duration rhs) {  return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)             ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)             : time_internal::GetRepHi(lhs) ==                       (std::numeric_limits<int64_t>::min)()                   ? time_internal::GetRepLo(lhs) + 1 <                         time_internal::GetRepLo(rhs) + 1                   : time_internal::GetRepLo(lhs) <                         time_internal::GetRepLo(rhs);}constexpr bool operator==(Duration lhs, Duration rhs) {  return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) &&         time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs);}constexpr Duration operator-(Duration d) {  // This is a little interesting because of the special cases.  //  // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're  // dealing with an integral number of seconds, and the only special case is  // the maximum negative finite duration, which can't be negated.  //  // Infinities stay infinite, and just change direction.  //  // Finally we're in the case where rep_lo_ is non-zero, and we can borrow  // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1  // is safe).  return time_internal::GetRepLo(d) == 0             ? time_internal::GetRepHi(d) ==                       (std::numeric_limits<int64_t>::min)()                   ? InfiniteDuration()                   : time_internal::MakeDuration(-time_internal::GetRepHi(d))             : time_internal::IsInfiniteDuration(d)                   ? time_internal::OppositeInfinity(d)                   : time_internal::MakeDuration(                         time_internal::NegateAndSubtractOne(                             time_internal::GetRepHi(d)),                         time_internal::kTicksPerSecond -                             time_internal::GetRepLo(d));}constexpr Duration InfiniteDuration() {  return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),                                     ~0U);}constexpr Duration FromChrono(const std::chrono::nanoseconds& d) {  return time_internal::FromChrono(d);}constexpr Duration FromChrono(const std::chrono::microseconds& d) {  return time_internal::FromChrono(d);}constexpr Duration FromChrono(const std::chrono::milliseconds& d) {  return time_internal::FromChrono(d);}constexpr Duration FromChrono(const std::chrono::seconds& d) {  return time_internal::FromChrono(d);}constexpr Duration FromChrono(const std::chrono::minutes& d) {  return time_internal::FromChrono(d);}constexpr Duration FromChrono(const std::chrono::hours& d) {  return time_internal::FromChrono(d);}constexpr Time FromUnixNanos(int64_t ns) {  return time_internal::FromUnixDuration(Nanoseconds(ns));}constexpr Time FromUnixMicros(int64_t us) {  return time_internal::FromUnixDuration(Microseconds(us));}constexpr Time FromUnixMillis(int64_t ms) {  return time_internal::FromUnixDuration(Milliseconds(ms));}constexpr Time FromUnixSeconds(int64_t s) {  return time_internal::FromUnixDuration(Seconds(s));}constexpr Time FromTimeT(time_t t) {  return time_internal::FromUnixDuration(Seconds(t));}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_TIME_TIME_H_
 |