| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/poisson_distribution.h"#include <algorithm>#include <cstddef>#include <cstdint>#include <iterator>#include <random>#include <sstream>#include <string>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"#include "absl/base/internal/raw_logging.h"#include "absl/base/macros.h"#include "absl/container/flat_hash_map.h"#include "absl/random/internal/chi_square.h"#include "absl/random/internal/distribution_test_util.h"#include "absl/random/internal/sequence_urbg.h"#include "absl/random/random.h"#include "absl/strings/str_cat.h"#include "absl/strings/str_format.h"#include "absl/strings/str_replace.h"#include "absl/strings/strip.h"// Notes about generating poisson variates://// It is unlikely that any implementation of std::poisson_distribution// will be stable over time and across library implementations. For instance// the three different poisson variate generators listed below all differ://// https://github.com/ampl/gsl/tree/master/randist/poisson.c// * GSL uses a gamma + binomial + knuth method to compute poisson variates.//// https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.tcc// * GCC uses the Devroye rejection algorithm, based on// Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,// New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!), ~p.511//   http://www.nrbook.com/devroye///// https://github.com/llvm-mirror/libcxx/blob/master/include/random// * CLANG uses a different rejection method, which appears to include a// normal-distribution approximation and an exponential distribution to// compute the threshold, including a similar factorial approximation to this// one, but it is unclear where the algorithm comes from, exactly.//namespace {using absl::random_internal::kChiSquared;// The PoissonDistributionInterfaceTest provides a basic test that// absl::poisson_distribution conforms to the interface and serialization// requirements imposed by [rand.req.dist] for the common integer types.template <typename IntType>class PoissonDistributionInterfaceTest : public ::testing::Test {};using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t,                                  uint8_t, uint16_t, uint32_t, uint64_t>;TYPED_TEST_CASE(PoissonDistributionInterfaceTest, IntTypes);TYPED_TEST(PoissonDistributionInterfaceTest, SerializeTest) {  using param_type = typename absl::poisson_distribution<TypeParam>::param_type;  const double kMax =      std::min(1e10 /* assertion limit */,               static_cast<double>(std::numeric_limits<TypeParam>::max()));  const double kParams[] = {      // Cases around 1.      1,                         //      std::nextafter(1.0, 0.0),  // 1 - epsilon      std::nextafter(1.0, 2.0),  // 1 + epsilon      // Arbitrary values.      1e-8, 1e-4,      0.0000005,  // ~7.2e-7      0.2,        // ~0.2x      0.5,        // 0.72      2,          // ~2.8      20,         // 3x ~9.6      100, 1e4, 1e8, 1.5e9, 1e20,      // Boundary cases.      std::numeric_limits<double>::max(),      std::numeric_limits<double>::epsilon(),      std::nextafter(std::numeric_limits<double>::min(),                     1.0),                        // min + epsilon      std::numeric_limits<double>::min(),         // smallest normal      std::numeric_limits<double>::denorm_min(),  // smallest denorm      std::numeric_limits<double>::min() / 2,     // denorm      std::nextafter(std::numeric_limits<double>::min(),                     0.0),  // denorm_max  };  constexpr int kCount = 1000;  absl::InsecureBitGen gen;  for (const double m : kParams) {    const double mean = std::min(kMax, m);    const param_type param(mean);    // Validate parameters.    absl::poisson_distribution<TypeParam> before(mean);    EXPECT_EQ(before.mean(), param.mean());    {      absl::poisson_distribution<TypeParam> via_param(param);      EXPECT_EQ(via_param, before);      EXPECT_EQ(via_param.param(), before.param());    }    // Smoke test.    auto sample_min = before.max();    auto sample_max = before.min();    for (int i = 0; i < kCount; i++) {      auto sample = before(gen);      EXPECT_GE(sample, before.min());      EXPECT_LE(sample, before.max());      if (sample > sample_max) sample_max = sample;      if (sample < sample_min) sample_min = sample;    }    ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ",                                         +sample_min, ", ", +sample_max));    // Validate stream serialization.    std::stringstream ss;    ss << before;    absl::poisson_distribution<TypeParam> after(3.8);    EXPECT_NE(before.mean(), after.mean());    EXPECT_NE(before.param(), after.param());    EXPECT_NE(before, after);    ss >> after;    EXPECT_EQ(before.mean(), after.mean())  //        << ss.str() << " "                  //        << (ss.good() ? "good " : "")       //        << (ss.bad() ? "bad " : "")         //        << (ss.eof() ? "eof " : "")         //        << (ss.fail() ? "fail " : "");  }}// See http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htmclass PoissonModel { public:  explicit PoissonModel(double mean) : mean_(mean) {}  double mean() const { return mean_; }  double variance() const { return mean_; }  double stddev() const { return std::sqrt(variance()); }  double skew() const { return 1.0 / mean_; }  double kurtosis() const { return 3.0 + 1.0 / mean_; }  // InitCDF() initializes the CDF for the distribution parameters.  void InitCDF();  // The InverseCDF, or the Percent-point function returns x, P(x) < v.  struct CDF {    size_t index;    double pmf;    double cdf;  };  CDF InverseCDF(double p) {    CDF target{0, 0, p};    auto it = std::upper_bound(        std::begin(cdf_), std::end(cdf_), target,        [](const CDF& a, const CDF& b) { return a.cdf < b.cdf; });    return *it;  }  void LogCDF() {    ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")"));    for (const auto c : cdf_) {      ABSL_INTERNAL_LOG(INFO,                        absl::StrCat(c.index, ": pmf=", c.pmf, " cdf=", c.cdf));    }  } private:  const double mean_;  std::vector<CDF> cdf_;};// The goal is to compute an InverseCDF function, or percent point function for// the poisson distribution, and use that to partition our output into equal// range buckets.  However there is no closed form solution for the inverse cdf// for poisson distributions (the closest is the incomplete gamma function).// Instead, `InitCDF` iteratively computes the PMF and the CDF. This enables// searching for the bucket points.void PoissonModel::InitCDF() {  if (!cdf_.empty()) {    // State already initialized.    return;  }  ABSL_ASSERT(mean_ < 201.0);  const size_t max_i = 50 * stddev() + mean();  const double e_neg_mean = std::exp(-mean());  ABSL_ASSERT(e_neg_mean > 0);  double d = 1;  double last_result = e_neg_mean;  double cumulative = e_neg_mean;  if (e_neg_mean > 1e-10) {    cdf_.push_back({0, e_neg_mean, cumulative});  }  for (size_t i = 1; i < max_i; i++) {    d *= (mean() / i);    double result = e_neg_mean * d;    cumulative += result;    if (result < 1e-10 && result < last_result && cumulative > 0.999999) {      break;    }    if (result > 1e-7) {      cdf_.push_back({i, result, cumulative});    }    last_result = result;  }  ABSL_ASSERT(!cdf_.empty());}// PoissonDistributionZTest implements a z-test for the poisson distribution.struct ZParam {  double mean;  double p_fail;   // Z-Test probability of failure.  int trials;      // Z-Test trials.  size_t samples;  // Z-Test samples.};class PoissonDistributionZTest : public testing::TestWithParam<ZParam>,                                 public PoissonModel { public:  PoissonDistributionZTest() : PoissonModel(GetParam().mean) {}  // ZTestImpl provides a basic z-squared test of the mean vs. expected  // mean for data generated by the poisson distribution.  template <typename D>  bool SingleZTest(const double p, const size_t samples);  absl::InsecureBitGen rng_;};template <typename D>bool PoissonDistributionZTest::SingleZTest(const double p,                                           const size_t samples) {  D dis(mean());  absl::flat_hash_map<int32_t, int> buckets;  std::vector<double> data;  data.reserve(samples);  for (int j = 0; j < samples; j++) {    const auto x = dis(rng_);    buckets[x]++;    data.push_back(x);  }  // The null-hypothesis is that the distribution is a poisson distribution with  // the provided mean (not estimated from the data).  const auto m = absl::random_internal::ComputeDistributionMoments(data);  const double max_err = absl::random_internal::MaxErrorTolerance(p);  const double z = absl::random_internal::ZScore(mean(), m);  const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);  if (!pass) {    ABSL_INTERNAL_LOG(        INFO, absl::StrFormat("p=%f max_err=%f\n"                              " mean=%f vs. %f\n"                              " stddev=%f vs. %f\n"                              " skewness=%f vs. %f\n"                              " kurtosis=%f vs. %f\n"                              " z=%f",                              p, max_err, m.mean, mean(), std::sqrt(m.variance),                              stddev(), m.skewness, skew(), m.kurtosis,                              kurtosis(), z));  }  return pass;}TEST_P(PoissonDistributionZTest, AbslPoissonDistribution) {  const auto& param = GetParam();  const int expected_failures =      std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));  const double p = absl::random_internal::RequiredSuccessProbability(      param.p_fail, param.trials);  int failures = 0;  for (int i = 0; i < param.trials; i++) {    failures +=        SingleZTest<absl::poisson_distribution<int32_t>>(p, param.samples) ? 0                                                                           : 1;  }  EXPECT_LE(failures, expected_failures);}std::vector<ZParam> GetZParams() {  // These values have been adjusted from the "exact" computed values to reduce  // failure rates.  //  // It turns out that the actual values are not as close to the expected values  // as would be ideal.  return std::vector<ZParam>({      // Knuth method.      ZParam{0.5, 0.01, 100, 1000},      ZParam{1.0, 0.01, 100, 1000},      ZParam{10.0, 0.01, 100, 5000},      // Split-knuth method.      ZParam{20.0, 0.01, 100, 10000},      ZParam{50.0, 0.01, 100, 10000},      // Ratio of gaussians method.      ZParam{51.0, 0.01, 100, 10000},      ZParam{200.0, 0.05, 10, 100000},      ZParam{100000.0, 0.05, 10, 1000000},  });}std::string ZParamName(const ::testing::TestParamInfo<ZParam>& info) {  const auto& p = info.param;  std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean));  return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});}INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionZTest,                         ::testing::ValuesIn(GetZParams()), ZParamName);// The PoissonDistributionChiSquaredTest class provides a basic test framework// for variates generated by a conforming poisson_distribution.class PoissonDistributionChiSquaredTest : public testing::TestWithParam<double>,                                          public PoissonModel { public:  PoissonDistributionChiSquaredTest() : PoissonModel(GetParam()) {}  // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for data  // generated by the poisson distribution.  template <typename D>  double ChiSquaredTestImpl(); private:  void InitChiSquaredTest(const double buckets);  absl::InsecureBitGen rng_;  std::vector<size_t> cutoffs_;  std::vector<double> expected_;};void PoissonDistributionChiSquaredTest::InitChiSquaredTest(    const double buckets) {  if (!cutoffs_.empty() && !expected_.empty()) {    return;  }  InitCDF();  // The code below finds cuttoffs that yield approximately equally-sized  // buckets to the extent that it is possible. However for poisson  // distributions this is particularly challenging for small mean parameters.  // Track the expected proportion of items in each bucket.  double last_cdf = 0;  const double inc = 1.0 / buckets;  for (double p = inc; p <= 1.0; p += inc) {    auto result = InverseCDF(p);    if (!cutoffs_.empty() && cutoffs_.back() == result.index) {      continue;    }    double d = result.cdf - last_cdf;    cutoffs_.push_back(result.index);    expected_.push_back(d);    last_cdf = result.cdf;  }  cutoffs_.push_back(std::numeric_limits<size_t>::max());  expected_.push_back(std::max(0.0, 1.0 - last_cdf));}template <typename D>double PoissonDistributionChiSquaredTest::ChiSquaredTestImpl() {  const int kSamples = 2000;  const int kBuckets = 50;  // The poisson CDF fails for large mean values, since e^-mean exceeds the  // machine precision. For these cases, using a normal approximation would be  // appropriate.  ABSL_ASSERT(mean() <= 200);  InitChiSquaredTest(kBuckets);  D dis(mean());  std::vector<int32_t> counts(cutoffs_.size(), 0);  for (int j = 0; j < kSamples; j++) {    const size_t x = dis(rng_);    auto it = std::lower_bound(std::begin(cutoffs_), std::end(cutoffs_), x);    counts[std::distance(cutoffs_.begin(), it)]++;  }  // Normalize the counts.  std::vector<int32_t> e(expected_.size(), 0);  for (int i = 0; i < e.size(); i++) {    e[i] = kSamples * expected_[i];  }  // The null-hypothesis is that the distribution is a poisson distribution with  // the provided mean (not estimated from the data).  const int dof = static_cast<int>(counts.size()) - 1;  // The threshold for logging is 1-in-50.  const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);  const double chi_square = absl::random_internal::ChiSquare(      std::begin(counts), std::end(counts), std::begin(e), std::end(e));  const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);  // Log if the chi_squared value is above the threshold.  if (chi_square > threshold) {    LogCDF();    ABSL_INTERNAL_LOG(INFO, absl::StrCat("VALUES  buckets=", counts.size(),                                         "  samples=", kSamples));    for (size_t i = 0; i < counts.size(); i++) {      ABSL_INTERNAL_LOG(          INFO, absl::StrCat(cutoffs_[i], ": ", counts[i], " vs. E=", e[i]));    }    ABSL_INTERNAL_LOG(        INFO,        absl::StrCat(kChiSquared, "(data, dof=", dof, ") = ", chi_square, " (",                     p, ")\n", " vs.\n", kChiSquared, " @ 0.98 = ", threshold));  }  return p;}TEST_P(PoissonDistributionChiSquaredTest, AbslPoissonDistribution) {  const int kTrials = 20;  // Large values are not yet supported -- this requires estimating the cdf  // using the normal distribution instead of the poisson in this case.  ASSERT_LE(mean(), 200.0);  if (mean() > 200.0) {    return;  }  int failures = 0;  for (int i = 0; i < kTrials; i++) {    double p_value = ChiSquaredTestImpl<absl::poisson_distribution<int32_t>>();    if (p_value < 0.005) {      failures++;    }  }  // There is a 0.10% chance of producing at least one failure, so raise the  // failure threshold high enough to allow for a flake rate < 10,000.  EXPECT_LE(failures, 4);}INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionChiSquaredTest,                         ::testing::Values(0.5, 1.0, 2.0, 10.0, 50.0, 51.0,                                           200.0));// NOTE: absl::poisson_distribution is not guaranteed to be stable.TEST(PoissonDistributionTest, StabilityTest) {  using testing::ElementsAre;  // absl::poisson_distribution stability relies on stability of  // std::exp, std::log, std::sqrt, std::ceil, std::floor, and  // absl::FastUniformBits, absl::StirlingLogFactorial, absl::RandU64ToDouble.  absl::random_internal::sequence_urbg urbg({      0x035b0dc7e0a18acfull, 0x06cebe0d2653682eull, 0x0061e9b23861596bull,      0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,      0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,      0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,      0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,      0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,      0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,      0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,      0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,      0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,      0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,      0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,      0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,      0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull, 0xffe6ea4d6edb0c73ull,      0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull, 0xEAAD8E716B93D5A0ull,      0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull, 0x8FF6E2FBF2122B64ull,      0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull, 0xD1CFF191B3A8C1ADull,      0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull, 0xE5A0CC0FB56F74E8ull,      0x18ACF3D6CE89E299ull, 0xB4A84FE0FD13E0B7ull, 0x7CC43B81D2ADA8D9ull,      0x165FA26680957705ull, 0x93CC7314211A1477ull, 0xE6AD206577B5FA86ull,      0xC75442F5FB9D35CFull, 0xEBCDAF0C7B3E89A0ull, 0xD6411BD3AE1E7E49ull,      0x00250E2D2071B35Eull, 0x226800BB57B8E0AFull, 0x2464369BF009B91Eull,      0x5563911D59DFA6AAull, 0x78C14389D95A537Full, 0x207D5BA202E5B9C5ull,      0x832603766295CFA9ull, 0x11C819684E734A41ull, 0xB3472DCA7B14A94Aull,  });  std::vector<int> output(10);  // Method 1.  {    absl::poisson_distribution<int> dist(5);    std::generate(std::begin(output), std::end(output),                  [&] { return dist(urbg); });  }  EXPECT_THAT(output,  // mean = 4.2              ElementsAre(1, 0, 0, 4, 2, 10, 3, 3, 7, 12));  // Method 2.  {    urbg.reset();    absl::poisson_distribution<int> dist(25);    std::generate(std::begin(output), std::end(output),                  [&] { return dist(urbg); });  }  EXPECT_THAT(output,  // mean = 19.8              ElementsAre(9, 35, 18, 10, 35, 18, 10, 35, 18, 10));  // Method 3.  {    urbg.reset();    absl::poisson_distribution<int> dist(121);    std::generate(std::begin(output), std::end(output),                  [&] { return dist(urbg); });  }  EXPECT_THAT(output,  // mean = 124.1              ElementsAre(161, 122, 129, 124, 112, 112, 117, 120, 130, 114));}TEST(PoissonDistributionTest, AlgorithmExpectedValue_1) {  // This tests small values of the Knuth method.  // The underlying uniform distribution will generate exactly 0.5.  absl::random_internal::sequence_urbg urbg({0x8000000000000001ull});  absl::poisson_distribution<int> dist(5);  EXPECT_EQ(7, dist(urbg));}TEST(PoissonDistributionTest, AlgorithmExpectedValue_2) {  // This tests larger values of the Knuth method.  // The underlying uniform distribution will generate exactly 0.5.  absl::random_internal::sequence_urbg urbg({0x8000000000000001ull});  absl::poisson_distribution<int> dist(25);  EXPECT_EQ(36, dist(urbg));}TEST(PoissonDistributionTest, AlgorithmExpectedValue_3) {  // This variant uses the ratio of uniforms method.  absl::random_internal::sequence_urbg urbg(      {0x7fffffffffffffffull, 0x8000000000000000ull});  absl::poisson_distribution<int> dist(121);  EXPECT_EQ(121, dist(urbg));}}  // namespace
 |