| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/distributions.h"#include <cmath>#include <cstdint>#include <random>#include <vector>#include "gtest/gtest.h"#include "absl/random/internal/distribution_test_util.h"#include "absl/random/random.h"namespace {constexpr int kSize = 400000;class RandomDistributionsTest : public testing::Test {};TEST_F(RandomDistributionsTest, UniformBoundFunctions) {  using absl::IntervalClosedClosed;  using absl::IntervalClosedOpen;  using absl::IntervalOpenClosed;  using absl::IntervalOpenOpen;  using absl::random_internal::uniform_lower_bound;  using absl::random_internal::uniform_upper_bound;  // absl::uniform_int_distribution natively assumes IntervalClosedClosed  // absl::uniform_real_distribution natively assumes IntervalClosedOpen  EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, 0, 100), 1);  EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, 0, 100), 1);  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, 0, 1.0), 0);  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, 0, 1.0), 0);  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, 0, 1.0), 0);  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, 0, 1.0), 0);  EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, 0, 100), 0);  EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, 0, 100), 0);  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, 0, 1.0), 0);  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, 0, 1.0), 0);  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, 0, 1.0), 0);  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, 0, 1.0), 0);  EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, 0, 100), 99);  EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, 0, 100), 99);  EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, 0, 1.0), 1.0);  EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, 0, 1.0), 1.0);  EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, 0, 1.0), 1.0);  EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, 0, 1.0), 1.0);  EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, 0, 100), 100);  EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0, 100), 100);  EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, 0, 1.0), 1.0);  EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, 0, 1.0), 1.0);  EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, 0, 1.0), 1.0);  EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, 0, 1.0), 1.0);  // Negative value tests  EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, -100, -1), -99);  EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, -100, -1), -99);  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, -2.0, -1.0), -2.0);  EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, -2.0, -1.0), -2.0);  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, -2.0, -1.0), -2.0);  EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, -2.0, -1.0), -2.0);  EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, -100, -1), -100);  EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, -100, -1), -100);  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, -2.0, -1.0), -2.0);  EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, -2.0, -1.0), -2.0);  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, -2.0, -1.0),            -2.0);  EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, -2.0, -1.0), -2.0);  EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, -100, -1), -2);  EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, -100, -1), -2);  EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, -2.0, -1.0), -1.0);  EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, -2.0, -1.0), -1.0);  EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, -2.0, -1.0), -1.0);  EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, -2.0, -1.0), -1.0);  EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, -100, -1), -1);  EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, -100, -1), -1);  EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, -2.0, -1.0), -1.0);  EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, -2.0, -1.0), -1.0);  EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, -2.0, -1.0), -1.0);  EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, -2.0, -1.0),            -1.0);  // Edge cases: the next value toward itself is itself.  const double d = 1.0;  const float f = 1.0;  EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, d, d), d);  EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, f, f), f);  EXPECT_GT(uniform_lower_bound(IntervalOpenClosed, 1.0, 2.0), 1.0);  EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, +0.0), 1.0);  EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -0.0), 1.0);  EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0), 1.0);  EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0f,                                std::numeric_limits<float>::max()),            std::numeric_limits<float>::max());  EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0,                                std::numeric_limits<double>::max()),            std::numeric_limits<double>::max());}struct Invalid {};template <typename A, typename B>auto InferredUniformReturnT(int)    -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),                              std::declval<A>(), std::declval<B>()));template <typename, typename>Invalid InferredUniformReturnT(...);template <typename TagType, typename A, typename B>auto InferredTaggedUniformReturnT(int)    -> decltype(absl::Uniform(std::declval<TagType>(),                              std::declval<absl::InsecureBitGen&>(),                              std::declval<A>(), std::declval<B>()));template <typename, typename, typename>Invalid InferredTaggedUniformReturnT(...);// Given types <A, B, Expect>, CheckArgsInferType() verifies that////   absl::Uniform(gen, A{}, B{})//// returns the type "Expect".//// This interface can also be used to assert that a given absl::Uniform()// overload does not exist / will not compile. Given types <A, B>, the// expression////   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))//// will not compile, leaving the definition of InferredUniformReturnT<A, B> to// resolve (via SFINAE) to the overload which returns type "Invalid". This// allows tests to assert that an invocation such as////   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)//// should not compile, since neither type, float nor int, can precisely// represent both endpoint-values. Writing:////   CheckArgsInferType<float, int, Invalid>()//// will assert that this overload does not exist.template <typename A, typename B, typename Expect>void CheckArgsInferType() {  static_assert(      absl::conjunction<          std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,          std::is_same<Expect,                       decltype(InferredUniformReturnT<B, A>(0))>>::value,      "");  static_assert(      absl::conjunction<          std::is_same<Expect, decltype(InferredTaggedUniformReturnT<                                        absl::IntervalOpenOpenTag, A, B>(0))>,          std::is_same<Expect,                       decltype(InferredTaggedUniformReturnT<                                absl::IntervalOpenOpenTag, B, A>(0))>>::value,      "");}template <typename A, typename B, typename ExplicitRet>auto ExplicitUniformReturnT(int) -> decltype(    absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),                               std::declval<A>(), std::declval<B>()));template <typename, typename, typename ExplicitRet>Invalid ExplicitUniformReturnT(...);template <typename TagType, typename A, typename B, typename ExplicitRet>auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(    std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),    std::declval<A>(), std::declval<B>()));template <typename, typename, typename, typename ExplicitRet>Invalid ExplicitTaggedUniformReturnT(...);// Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that////   absl::Uniform<Expect>(gen, A{}, B{})//// returns the type "Expect", and that the function-overload has the signature////   Expect(URBG&, Expect, Expect)template <typename A, typename B, typename Expect>void CheckArgsReturnExpectedType() {  static_assert(      absl::conjunction<          std::is_same<Expect,                       decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,          std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(                                   0))>>::value,      "");  static_assert(      absl::conjunction<          std::is_same<Expect,                       decltype(ExplicitTaggedUniformReturnT<                                absl::IntervalOpenOpenTag, A, B, Expect>(0))>,          std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<                                        absl::IntervalOpenOpenTag, B, A,                                        Expect>(0))>>::value,      "");}TEST_F(RandomDistributionsTest, UniformTypeInference) {  // Infers common types.  CheckArgsInferType<uint16_t, uint16_t, uint16_t>();  CheckArgsInferType<uint32_t, uint32_t, uint32_t>();  CheckArgsInferType<uint64_t, uint64_t, uint64_t>();  CheckArgsInferType<int16_t, int16_t, int16_t>();  CheckArgsInferType<int32_t, int32_t, int32_t>();  CheckArgsInferType<int64_t, int64_t, int64_t>();  CheckArgsInferType<float, float, float>();  CheckArgsInferType<double, double, double>();  // Explicitly-specified return-values override inferences.  CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();  CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();  CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();  CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();  CheckArgsReturnExpectedType<int16_t, int32_t, double>();  CheckArgsReturnExpectedType<float, float, double>();  CheckArgsReturnExpectedType<int, int, int16_t>();  // Properly promotes uint16_t.  CheckArgsInferType<uint16_t, uint32_t, uint32_t>();  CheckArgsInferType<uint16_t, uint64_t, uint64_t>();  CheckArgsInferType<uint16_t, int32_t, int32_t>();  CheckArgsInferType<uint16_t, int64_t, int64_t>();  CheckArgsInferType<uint16_t, float, float>();  CheckArgsInferType<uint16_t, double, double>();  // Properly promotes int16_t.  CheckArgsInferType<int16_t, int32_t, int32_t>();  CheckArgsInferType<int16_t, int64_t, int64_t>();  CheckArgsInferType<int16_t, float, float>();  CheckArgsInferType<int16_t, double, double>();  // Invalid (u)int16_t-pairings do not compile.  // See "CheckArgsInferType" comments above, for how this is achieved.  CheckArgsInferType<uint16_t, int16_t, Invalid>();  CheckArgsInferType<int16_t, uint32_t, Invalid>();  CheckArgsInferType<int16_t, uint64_t, Invalid>();  // Properly promotes uint32_t.  CheckArgsInferType<uint32_t, uint64_t, uint64_t>();  CheckArgsInferType<uint32_t, int64_t, int64_t>();  CheckArgsInferType<uint32_t, double, double>();  // Properly promotes int32_t.  CheckArgsInferType<int32_t, int64_t, int64_t>();  CheckArgsInferType<int32_t, double, double>();  // Invalid (u)int32_t-pairings do not compile.  CheckArgsInferType<uint32_t, int32_t, Invalid>();  CheckArgsInferType<int32_t, uint64_t, Invalid>();  CheckArgsInferType<int32_t, float, Invalid>();  CheckArgsInferType<uint32_t, float, Invalid>();  // Invalid (u)int64_t-pairings do not compile.  CheckArgsInferType<uint64_t, int64_t, Invalid>();  CheckArgsInferType<int64_t, float, Invalid>();  CheckArgsInferType<int64_t, double, Invalid>();  // Properly promotes float.  CheckArgsInferType<float, double, double>();  // Examples.  absl::InsecureBitGen gen;  EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));  EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,                             static_cast<uint16_t>(0), 1.0f));  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));  EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));  EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));  EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));}TEST_F(RandomDistributionsTest, UniformNoBounds) {  absl::InsecureBitGen gen;  absl::Uniform<uint8_t>(gen);  absl::Uniform<uint16_t>(gen);  absl::Uniform<uint32_t>(gen);  absl::Uniform<uint64_t>(gen);}// TODO(lar): Validate properties of non-default interval-semantics.TEST_F(RandomDistributionsTest, UniformReal) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Uniform(gen, 0, 1.0);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(0.5, moments.mean, 0.02);  EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);  EXPECT_NEAR(0.0, moments.skewness, 0.02);  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);}TEST_F(RandomDistributionsTest, UniformInt) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    const int64_t kMax = 1000000000000ll;    int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);    // convert to double.    values[i] = static_cast<double>(j) / static_cast<double>(kMax);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(0.5, moments.mean, 0.02);  EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);  EXPECT_NEAR(0.0, moments.skewness, 0.02);  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);  /*  // NOTE: These are not supported by absl::Uniform, which is specialized  // on integer and real valued types.  enum E { E0, E1 };    // enum  enum S : int { S0, S1 };    // signed enum  enum U : unsigned int { U0, U1 };  // unsigned enum  absl::Uniform(gen, E0, E1);  absl::Uniform(gen, S0, S1);  absl::Uniform(gen, U0, U1);  */}TEST_F(RandomDistributionsTest, Exponential) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Exponential<double>(gen);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(1.0, moments.mean, 0.02);  EXPECT_NEAR(1.0, moments.variance, 0.025);  EXPECT_NEAR(2.0, moments.skewness, 0.1);  EXPECT_LT(5.0, moments.kurtosis);}TEST_F(RandomDistributionsTest, PoissonDefault) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Poisson<int64_t>(gen);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(1.0, moments.mean, 0.02);  EXPECT_NEAR(1.0, moments.variance, 0.02);  EXPECT_NEAR(1.0, moments.skewness, 0.025);  EXPECT_LT(2.0, moments.kurtosis);}TEST_F(RandomDistributionsTest, PoissonLarge) {  constexpr double kMean = 100000000.0;  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Poisson<int64_t>(gen, kMean);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);  EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);  EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);  EXPECT_LT(2.0, moments.kurtosis);}TEST_F(RandomDistributionsTest, Bernoulli) {  constexpr double kP = 0.5151515151;  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Bernoulli(gen, kP);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(kP, moments.mean, 0.01);}TEST_F(RandomDistributionsTest, Beta) {  constexpr double kAlpha = 2.0;  constexpr double kBeta = 3.0;  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Beta(gen, kAlpha, kBeta);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(0.4, moments.mean, 0.01);}TEST_F(RandomDistributionsTest, Zipf) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Zipf<int64_t>(gen, 100);  }  // The mean of a zipf distribution is: H(N, s-1) / H(N,s).  // Given the parameter v = 1, this gives the following function:  // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;}TEST_F(RandomDistributionsTest, Gaussian) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::Gaussian<double>(gen);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(0.0, moments.mean, 0.02);  EXPECT_NEAR(1.0, moments.variance, 0.04);  EXPECT_NEAR(0, moments.skewness, 0.2);  EXPECT_NEAR(3.0, moments.kurtosis, 0.5);}TEST_F(RandomDistributionsTest, LogUniform) {  std::vector<double> values(kSize);  absl::InsecureBitGen gen;  for (int i = 0; i < kSize; i++) {    values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);  }  // The mean is the sum of the fractional means of the uniform distributions:  // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]  // [64..127][128..255][256..511][512..1023]  const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +                       64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /                      (2.0 * 11.0);  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(mean, moments.mean, 2) << moments;}}  // namespace
 |