| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_#define ABSL_RANDOM_BETA_DISTRIBUTION_H_#include <cassert>#include <cmath>#include <istream>#include <limits>#include <ostream>#include <type_traits>#include "absl/meta/type_traits.h"#include "absl/random/internal/fast_uniform_bits.h"#include "absl/random/internal/fastmath.h"#include "absl/random/internal/generate_real.h"#include "absl/random/internal/iostream_state_saver.h"namespace absl {ABSL_NAMESPACE_BEGIN// absl::beta_distribution:// Generate a floating-point variate conforming to a Beta distribution://   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),// where the params alpha and beta are both strictly positive real values.//// The support is the open interval (0, 1), but the return value might be equal// to 0 or 1, due to numerical errors when alpha and beta are very different.//// Usage note: One usage is that alpha and beta are counts of number of// successes and failures. When the total number of trials are large, consider// approximating a beta distribution with a Gaussian distribution with the same// mean and variance. One could use the skewness, which depends only on the// smaller of alpha and beta when the number of trials are sufficiently large,// to quantify how far a beta distribution is from the normal distribution.template <typename RealType = double>class beta_distribution { public:  using result_type = RealType;  class param_type {   public:    using distribution_type = beta_distribution;    explicit param_type(result_type alpha, result_type beta)        : alpha_(alpha), beta_(beta) {      assert(alpha >= 0);      assert(beta >= 0);      assert(alpha <= (std::numeric_limits<result_type>::max)());      assert(beta <= (std::numeric_limits<result_type>::max)());      if (alpha == 0 || beta == 0) {        method_ = DEGENERATE_SMALL;        x_ = (alpha >= beta) ? 1 : 0;        return;      }      // a_ = min(beta, alpha), b_ = max(beta, alpha).      if (beta < alpha) {        inverted_ = true;        a_ = beta;        b_ = alpha;      } else {        inverted_ = false;        a_ = alpha;        b_ = beta;      }      if (a_ <= 1 && b_ >= ThresholdForLargeA()) {        method_ = DEGENERATE_SMALL;        x_ = inverted_ ? result_type(1) : result_type(0);        return;      }      // For threshold values, see also:      // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.      // February, 2009.      if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {        // Choose Joehnk over Cheng when it's faster or when Cheng encounters        // numerical issues.        method_ = JOEHNK;        a_ = result_type(1) / alpha_;        b_ = result_type(1) / beta_;        if (std::isinf(a_) || std::isinf(b_)) {          method_ = DEGENERATE_SMALL;          x_ = inverted_ ? result_type(1) : result_type(0);        }        return;      }      if (a_ >= ThresholdForLargeA()) {        method_ = DEGENERATE_LARGE;        // Note: on PPC for long double, evaluating        // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.        result_type r = a_ / b_;        x_ = (inverted_ ? result_type(1) : r) / (1 + r);        return;      }      x_ = a_ + b_;      log_x_ = std::log(x_);      if (a_ <= 1) {        method_ = CHENG_BA;        y_ = result_type(1) / a_;        gamma_ = a_ + a_;        return;      }      method_ = CHENG_BB;      result_type r = (a_ - 1) / (b_ - 1);      y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));      gamma_ = a_ + result_type(1) / y_;    }    result_type alpha() const { return alpha_; }    result_type beta() const { return beta_; }    friend bool operator==(const param_type& a, const param_type& b) {      return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;    }    friend bool operator!=(const param_type& a, const param_type& b) {      return !(a == b);    }   private:    friend class beta_distribution;#ifdef _MSC_VER    // MSVC does not have constexpr implementations for std::log and std::exp    // so they are computed at runtime.#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR#else#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr#endif    // The threshold for whether std::exp(1/a) is finite.    // Note that this value is quite large, and a smaller a_ is NOT abnormal.    static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type    ThresholdForSmallA() {      return result_type(1) /             std::log((std::numeric_limits<result_type>::max)());    }    // The threshold for whether a * std::log(a) is finite.    static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type    ThresholdForLargeA() {      return std::exp(          std::log((std::numeric_limits<result_type>::max)()) -          std::log(std::log((std::numeric_limits<result_type>::max)())) -          ThresholdPadding());    }#undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR    // Pad the threshold for large A for long double on PPC. This is done via a    // template specialization below.    static constexpr result_type ThresholdPadding() { return 0; }    enum Method {      JOEHNK,    // Uses algorithm Joehnk      CHENG_BA,  // Uses algorithm BA in Cheng      CHENG_BB,  // Uses algorithm BB in Cheng      // Note: See also:      //   Hung et al. Evaluation of beta generation algorithms. Communications      //   in Statistics-Simulation and Computation 38.4 (2009): 750-770.      // especially:      //   Zechner, Heinz, and Ernst Stadlober. Generating beta variates via      //   patchwork rejection. Computing 50.1 (1993): 1-18.      DEGENERATE_SMALL,  // a_ is abnormally small.      DEGENERATE_LARGE,  // a_ is abnormally large.    };    result_type alpha_;    result_type beta_;    result_type a_;  // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK    result_type b_;  // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK    result_type x_;  // alpha + beta, or the result in degenerate cases    result_type log_x_;  // log(x_)    result_type y_;      // "beta" in Cheng    result_type gamma_;  // "gamma" in Cheng    Method method_;    // Placing this last for optimal alignment.    // Whether alpha_ != a_, i.e. true iff alpha_ > beta_.    bool inverted_;    static_assert(std::is_floating_point<RealType>::value,                  "Class-template absl::beta_distribution<> must be "                  "parameterized using a floating-point type.");  };  beta_distribution() : beta_distribution(1) {}  explicit beta_distribution(result_type alpha, result_type beta = 1)      : param_(alpha, beta) {}  explicit beta_distribution(const param_type& p) : param_(p) {}  void reset() {}  // Generating functions  template <typename URBG>  result_type operator()(URBG& g) {  // NOLINT(runtime/references)    return (*this)(g, param_);  }  template <typename URBG>  result_type operator()(URBG& g,  // NOLINT(runtime/references)                         const param_type& p);  param_type param() const { return param_; }  void param(const param_type& p) { param_ = p; }  result_type(min)() const { return 0; }  result_type(max)() const { return 1; }  result_type alpha() const { return param_.alpha(); }  result_type beta() const { return param_.beta(); }  friend bool operator==(const beta_distribution& a,                         const beta_distribution& b) {    return a.param_ == b.param_;  }  friend bool operator!=(const beta_distribution& a,                         const beta_distribution& b) {    return a.param_ != b.param_;  } private:  template <typename URBG>  result_type AlgorithmJoehnk(URBG& g,  // NOLINT(runtime/references)                              const param_type& p);  template <typename URBG>  result_type AlgorithmCheng(URBG& g,  // NOLINT(runtime/references)                             const param_type& p);  template <typename URBG>  result_type DegenerateCase(URBG& g,  // NOLINT(runtime/references)                             const param_type& p) {    if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {      // Returns 0 or 1 with equal probability.      random_internal::FastUniformBits<uint8_t> fast_u8;      return static_cast<result_type>((fast_u8(g) & 0x10) !=                                      0);  // pick any single bit.    }    return p.x_;  }  param_type param_;  random_internal::FastUniformBits<uint64_t> fast_u64_;};#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \    defined(__ppc__) || defined(__PPC__)// PPC needs a more stringent boundary for long double.template <>constexpr long doublebeta_distribution<long double>::param_type::ThresholdPadding() {  return 10;}#endiftemplate <typename RealType>template <typename URBG>typename beta_distribution<RealType>::result_typebeta_distribution<RealType>::AlgorithmJoehnk(    URBG& g,  // NOLINT(runtime/references)    const param_type& p) {  using random_internal::GeneratePositiveTag;  using random_internal::GenerateRealFromBits;  using real_type =      absl::conditional_t<std::is_same<RealType, float>::value, float, double>;  // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten  // Zufallszahlen. Metrika 8.1 (1964): 5-15.  // This method is described in Knuth, Vol 2 (Third Edition), pp 134.  result_type u, v, x, y, z;  for (;;) {    u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(        fast_u64_(g));    v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(        fast_u64_(g));    // Direct method. std::pow is slow for float, so rely on the optimizer to    // remove the std::pow() path for that case.    if (!std::is_same<float, result_type>::value) {      x = std::pow(u, p.a_);      y = std::pow(v, p.b_);      z = x + y;      if (z > 1) {        // Reject if and only if `x + y > 1.0`        continue;      }      if (z > 0) {        // When both alpha and beta are small, x and y are both close to 0, so        // divide by (x+y) directly may result in nan.        return x / z;      }    }    // Log transform.    // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )    // since u, v <= 1.0,  x, y < 0.    x = std::log(u) * p.a_;    y = std::log(v) * p.b_;    if (!std::isfinite(x) || !std::isfinite(y)) {      continue;    }    // z = log( pow(u, a) + pow(v, b) )    z = x > y ? (x + std::log(1 + std::exp(y - x)))              : (y + std::log(1 + std::exp(x - y)));    // Reject iff log(x+y) > 0.    if (z > 0) {      continue;    }    return std::exp(x - z);  }}template <typename RealType>template <typename URBG>typename beta_distribution<RealType>::result_typebeta_distribution<RealType>::AlgorithmCheng(    URBG& g,  // NOLINT(runtime/references)    const param_type& p) {  using random_internal::GeneratePositiveTag;  using random_internal::GenerateRealFromBits;  using real_type =      absl::conditional_t<std::is_same<RealType, float>::value, float, double>;  // Based on Cheng, Russell CH. Generating beta variates with nonintegral  // shape parameters. Communications of the ACM 21.4 (1978): 317-322.  // (https://dl.acm.org/citation.cfm?id=359482).  static constexpr result_type kLogFour =      result_type(1.3862943611198906188344642429163531361);  // log(4)  static constexpr result_type kS =      result_type(2.6094379124341003746007593332261876);  // 1+log(5)  const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);  result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;  for (;;) {    u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(        fast_u64_(g));    u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(        fast_u64_(g));    v = p.y_ * std::log(u1 / (1 - u1));    w = p.a_ * std::exp(v);    bw_inv = result_type(1) / (p.b_ + w);    r = p.gamma_ * v - kLogFour;    s = p.a_ + r - w;    z = u1 * u1 * u2;    if (!use_algorithm_ba && s + kS >= 5 * z) {      break;    }    t = std::log(z);    if (!use_algorithm_ba && s >= t) {      break;    }    lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;    if (lhs >= t) {      break;    }  }  return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;}template <typename RealType>template <typename URBG>typename beta_distribution<RealType>::result_typebeta_distribution<RealType>::operator()(URBG& g,  // NOLINT(runtime/references)                                        const param_type& p) {  switch (p.method_) {    case param_type::JOEHNK:      return AlgorithmJoehnk(g, p);    case param_type::CHENG_BA:      ABSL_FALLTHROUGH_INTENDED;    case param_type::CHENG_BB:      return AlgorithmCheng(g, p);    default:      return DegenerateCase(g, p);  }}template <typename CharT, typename Traits, typename RealType>std::basic_ostream<CharT, Traits>& operator<<(    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)    const beta_distribution<RealType>& x) {  auto saver = random_internal::make_ostream_state_saver(os);  os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);  os << x.alpha() << os.fill() << x.beta();  return os;}template <typename CharT, typename Traits, typename RealType>std::basic_istream<CharT, Traits>& operator>>(    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)    beta_distribution<RealType>& x) {       // NOLINT(runtime/references)  using result_type = typename beta_distribution<RealType>::result_type;  using param_type = typename beta_distribution<RealType>::param_type;  result_type alpha, beta;  auto saver = random_internal::make_istream_state_saver(is);  alpha = random_internal::read_floating_point<result_type>(is);  if (is.fail()) return is;  beta = random_internal::read_floating_point<result_type>(is);  if (!is.fail()) {    x.param(param_type(alpha, beta));  }  return is;}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_BETA_DISTRIBUTION_H_
 |