| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_#define ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_#include <cstdint>#include <istream>#include <limits>#include "absl/base/optimization.h"#include "absl/random/internal/fast_uniform_bits.h"#include "absl/random/internal/iostream_state_saver.h"namespace absl {ABSL_NAMESPACE_BEGIN// absl::bernoulli_distribution is a drop in replacement for// std::bernoulli_distribution. It guarantees that (given a perfect// UniformRandomBitGenerator) the acceptance probability is *exactly* equal to// the given double.//// The implementation assumes that double is IEEE754class bernoulli_distribution { public:  using result_type = bool;  class param_type {   public:    using distribution_type = bernoulli_distribution;    explicit param_type(double p = 0.5) : prob_(p) {      assert(p >= 0.0 && p <= 1.0);    }    double p() const { return prob_; }    friend bool operator==(const param_type& p1, const param_type& p2) {      return p1.p() == p2.p();    }    friend bool operator!=(const param_type& p1, const param_type& p2) {      return p1.p() != p2.p();    }   private:    double prob_;  };  bernoulli_distribution() : bernoulli_distribution(0.5) {}  explicit bernoulli_distribution(double p) : param_(p) {}  explicit bernoulli_distribution(param_type p) : param_(p) {}  // no-op  void reset() {}  template <typename URBG>  bool operator()(URBG& g) {  // NOLINT(runtime/references)    return Generate(param_.p(), g);  }  template <typename URBG>  bool operator()(URBG& g,  // NOLINT(runtime/references)                  const param_type& param) {    return Generate(param.p(), g);  }  param_type param() const { return param_; }  void param(const param_type& param) { param_ = param; }  double p() const { return param_.p(); }  result_type(min)() const { return false; }  result_type(max)() const { return true; }  friend bool operator==(const bernoulli_distribution& d1,                         const bernoulli_distribution& d2) {    return d1.param_ == d2.param_;  }  friend bool operator!=(const bernoulli_distribution& d1,                         const bernoulli_distribution& d2) {    return d1.param_ != d2.param_;  } private:  static constexpr uint64_t kP32 = static_cast<uint64_t>(1) << 32;  template <typename URBG>  static bool Generate(double p, URBG& g);  // NOLINT(runtime/references)  param_type param_;};template <typename CharT, typename Traits>std::basic_ostream<CharT, Traits>& operator<<(    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)    const bernoulli_distribution& x) {  auto saver = random_internal::make_ostream_state_saver(os);  os.precision(random_internal::stream_precision_helper<double>::kPrecision);  os << x.p();  return os;}template <typename CharT, typename Traits>std::basic_istream<CharT, Traits>& operator>>(    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)    bernoulli_distribution& x) {            // NOLINT(runtime/references)  auto saver = random_internal::make_istream_state_saver(is);  auto p = random_internal::read_floating_point<double>(is);  if (!is.fail()) {    x.param(bernoulli_distribution::param_type(p));  }  return is;}template <typename URBG>bool bernoulli_distribution::Generate(double p,                                      URBG& g) {  // NOLINT(runtime/references)  random_internal::FastUniformBits<uint32_t> fast_u32;  while (true) {    // There are two aspects of the definition of `c` below that are worth    // commenting on.  First, because `p` is in the range [0, 1], `c` is in the    // range [0, 2^32] which does not fit in a uint32_t and therefore requires    // 64 bits.    //    // Second, `c` is constructed by first casting explicitly to a signed    // integer and then converting implicitly to an unsigned integer of the same    // size.  This is done because the hardware conversion instructions produce    // signed integers from double; if taken as a uint64_t the conversion would    // be wrong for doubles greater than 2^63 (not relevant in this use-case).    // If converted directly to an unsigned integer, the compiler would end up    // emitting code to handle such large values that are not relevant due to    // the known bounds on `c`.  To avoid these extra instructions this    // implementation converts first to the signed type and then use the    // implicit conversion to unsigned (which is a no-op).    const uint64_t c = static_cast<int64_t>(p * kP32);    const uint32_t v = fast_u32(g);    // FAST PATH: this path fails with probability 1/2^32.  Note that simply    // returning v <= c would approximate P very well (up to an absolute error    // of 1/2^32); the slow path (taken in that range of possible error, in the    // case of equality) eliminates the remaining error.    if (ABSL_PREDICT_TRUE(v != c)) return v < c;    // It is guaranteed that `q` is strictly less than 1, because if `q` were    // greater than or equal to 1, the same would be true for `p`. Certainly `p`    // cannot be greater than 1, and if `p == 1`, then the fast path would    // necessary have been taken already.    const double q = static_cast<double>(c) / kP32;    // The probability of acceptance on the fast path is `q` and so the    // probability of acceptance here should be `p - q`.    //    // Note that `q` is obtained from `p` via some shifts and conversions, the    // upshot of which is that `q` is simply `p` with some of the    // least-significant bits of its mantissa set to zero. This means that the    // difference `p - q` will not have any rounding errors. To see why, pretend    // that double has 10 bits of resolution and q is obtained from `p` in such    // a way that the 4 least-significant bits of its mantissa are set to zero.    // For example:    //   p   = 1.1100111011 * 2^-1    //   q   = 1.1100110000 * 2^-1    // p - q = 1.011        * 2^-8    // The difference `p - q` has exactly the nonzero mantissa bits that were    // "lost" in `q` producing a number which is certainly representable in a    // double.    const double left = p - q;    // By construction, the probability of being on this slow path is 1/2^32, so    // P(accept in slow path) = P(accept| in slow path) * P(slow path),    // which means the probability of acceptance here is `1 / (left * kP32)`:    const double here = left * kP32;    // The simplest way to compute the result of this trial is to repeat the    // whole algorithm with the new probability. This terminates because even    // given  arbitrarily unfriendly "random" bits, each iteration either    // multiplies a tiny probability by 2^32 (if c == 0) or strips off some    // number of nonzero mantissa bits. That process is bounded.    if (here == 0) return false;    p = here;  }}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_
 |