| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: memory.h// -----------------------------------------------------------------------------//// This header file contains utility functions for managing the creation and// conversion of smart pointers. This file is an extension to the C++// standard <memory> library header file.#ifndef ABSL_MEMORY_MEMORY_H_#define ABSL_MEMORY_MEMORY_H_#include <cstddef>#include <limits>#include <memory>#include <new>#include <type_traits>#include <utility>#include "absl/base/macros.h"#include "absl/meta/type_traits.h"namespace absl {ABSL_NAMESPACE_BEGIN// -----------------------------------------------------------------------------// Function Template: WrapUnique()// -----------------------------------------------------------------------------//// Adopts ownership from a raw pointer and transfers it to the returned// `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*// specify the template type `T` when calling `WrapUnique`.//// Example://   X* NewX(int, int);//   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.//// Do not call WrapUnique with an explicit type, as in// `WrapUnique<X>(NewX(1, 2))`.  The purpose of WrapUnique is to automatically// deduce the pointer type. If you wish to make the type explicit, just use// `std::unique_ptr` directly.////   auto x = std::unique_ptr<X>(NewX(1, 2));//                  - or -//   std::unique_ptr<X> x(NewX(1, 2));//// While `absl::WrapUnique` is useful for capturing the output of a raw// pointer factory, prefer 'absl::make_unique<T>(args...)' over// 'absl::WrapUnique(new T(args...))'.////   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.//   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.//// Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid// expression. In particular, `absl::WrapUnique()` cannot wrap pointers to// arrays, functions or void, and it must not be used to capture pointers// obtained from array-new expressions (even though that would compile!).template <typename T>std::unique_ptr<T> WrapUnique(T* ptr) {  static_assert(!std::is_array<T>::value, "array types are unsupported");  static_assert(std::is_object<T>::value, "non-object types are unsupported");  return std::unique_ptr<T>(ptr);}namespace memory_internal {// Traits to select proper overload and return type for `absl::make_unique<>`.template <typename T>struct MakeUniqueResult {  using scalar = std::unique_ptr<T>;};template <typename T>struct MakeUniqueResult<T[]> {  using array = std::unique_ptr<T[]>;};template <typename T, size_t N>struct MakeUniqueResult<T[N]> {  using invalid = void;};}  // namespace memory_internal// gcc 4.8 has __cplusplus at 201301 but the libstdc++ shipped with it doesn't// define make_unique.  Other supported compilers either just define __cplusplus// as 201103 but have make_unique (msvc), or have make_unique whenever// __cplusplus > 201103 (clang).#if (__cplusplus > 201103L || defined(_MSC_VER)) && \    !(defined(__GLIBCXX__) && !defined(__cpp_lib_make_unique))using std::make_unique;#else// -----------------------------------------------------------------------------// Function Template: make_unique<T>()// -----------------------------------------------------------------------------//// Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries// during the construction process. `absl::make_unique<>` also avoids redundant// type declarations, by avoiding the need to explicitly use the `new` operator.//// This implementation of `absl::make_unique<>` is designed for C++11 code and// will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction.// `absl::make_unique<>` is designed to be 100% compatible with// `std::make_unique<>` so that the eventual migration will involve a simple// rename operation.//// For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,// see Herb Sutter's explanation on// (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].// (In general, reviewers should treat `new T(a,b)` with scrutiny.)//// Example usage:////    auto p = make_unique<X>(args...);  // 'p'  is a std::unique_ptr<X>//    auto pa = make_unique<X[]>(5);     // 'pa' is a std::unique_ptr<X[]>//// Three overloads of `absl::make_unique` are required:////   - For non-array T:////       Allocates a T with `new T(std::forward<Args> args...)`,//       forwarding all `args` to T's constructor.//       Returns a `std::unique_ptr<T>` owning that object.////   - For an array of unknown bounds T[]:////       `absl::make_unique<>` will allocate an array T of type U[] with//       `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array.////       Note that 'U[n]()' is different from 'U[n]', and elements will be//       value-initialized. Note as well that `std::unique_ptr` will perform its//       own destruction of the array elements upon leaving scope, even though//       the array [] does not have a default destructor.////       NOTE: an array of unknown bounds T[] may still be (and often will be)//       initialized to have a size, and will still use this overload. E.g:////         auto my_array = absl::make_unique<int[]>(10);////   - For an array of known bounds T[N]:////       `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as//       this overload is not useful.////       NOTE: an array of known bounds T[N] is not considered a useful//       construction, and may cause undefined behavior in templates. E.g:////         auto my_array = absl::make_unique<int[10]>();////       In those cases, of course, you can still use the overload above and//       simply initialize it to its desired size:////         auto my_array = absl::make_unique<int[]>(10);// `absl::make_unique` overload for non-array types.template <typename T, typename... Args>typename memory_internal::MakeUniqueResult<T>::scalar make_unique(    Args&&... args) {  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));}// `absl::make_unique` overload for an array T[] of unknown bounds.// The array allocation needs to use the `new T[size]` form and cannot take// element constructor arguments. The `std::unique_ptr` will manage destructing// these array elements.template <typename T>typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) {  return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]());}// `absl::make_unique` overload for an array T[N] of known bounds.// This construction will be rejected.template <typename T, typename... Args>typename memory_internal::MakeUniqueResult<T>::invalid make_unique(    Args&&... /* args */) = delete;#endif// -----------------------------------------------------------------------------// Function Template: RawPtr()// -----------------------------------------------------------------------------//// Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is// useful within templates that need to handle a complement of raw pointers,// `std::nullptr_t`, and smart pointers.template <typename T>auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {  // ptr is a forwarding reference to support Ts with non-const operators.  return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;}inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }// -----------------------------------------------------------------------------// Function Template: ShareUniquePtr()// -----------------------------------------------------------------------------//// Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced// type. Ownership (if any) of the held value is transferred to the returned// shared pointer.//// Example:////     auto up = absl::make_unique<int>(10);//     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>//     CHECK_EQ(*sp, 10);//     CHECK(up == nullptr);//// Note that this conversion is correct even when T is an array type, and more// generally it works for *any* deleter of the `unique_ptr` (single-object// deleter, array deleter, or any custom deleter), since the deleter is adopted// by the shared pointer as well. The deleter is copied (unless it is a// reference).//// Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a// null shared pointer does not attempt to call the deleter.template <typename T, typename D>std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {  return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();}// -----------------------------------------------------------------------------// Function Template: WeakenPtr()// -----------------------------------------------------------------------------//// Creates a weak pointer associated with a given shared pointer. The returned// value is a `std::weak_ptr` of deduced type.//// Example:////    auto sp = std::make_shared<int>(10);//    auto wp = absl::WeakenPtr(sp);//    CHECK_EQ(sp.get(), wp.lock().get());//    sp.reset();//    CHECK(wp.lock() == nullptr);//template <typename T>std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {  return std::weak_ptr<T>(ptr);}namespace memory_internal {// ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.template <template <typename> class Extract, typename Obj, typename Default,          typename>struct ExtractOr {  using type = Default;};template <template <typename> class Extract, typename Obj, typename Default>struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {  using type = Extract<Obj>;};template <template <typename> class Extract, typename Obj, typename Default>using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;// Extractors for the features of allocators.template <typename T>using GetPointer = typename T::pointer;template <typename T>using GetConstPointer = typename T::const_pointer;template <typename T>using GetVoidPointer = typename T::void_pointer;template <typename T>using GetConstVoidPointer = typename T::const_void_pointer;template <typename T>using GetDifferenceType = typename T::difference_type;template <typename T>using GetSizeType = typename T::size_type;template <typename T>using GetPropagateOnContainerCopyAssignment =    typename T::propagate_on_container_copy_assignment;template <typename T>using GetPropagateOnContainerMoveAssignment =    typename T::propagate_on_container_move_assignment;template <typename T>using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap;template <typename T>using GetIsAlwaysEqual = typename T::is_always_equal;template <typename T>struct GetFirstArg;template <template <typename...> class Class, typename T, typename... Args>struct GetFirstArg<Class<T, Args...>> {  using type = T;};template <typename Ptr, typename = void>struct ElementType {  using type = typename GetFirstArg<Ptr>::type;};template <typename T>struct ElementType<T, void_t<typename T::element_type>> {  using type = typename T::element_type;};template <typename T, typename U>struct RebindFirstArg;template <template <typename...> class Class, typename T, typename... Args,          typename U>struct RebindFirstArg<Class<T, Args...>, U> {  using type = Class<U, Args...>;};template <typename T, typename U, typename = void>struct RebindPtr {  using type = typename RebindFirstArg<T, U>::type;};template <typename T, typename U>struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> {  using type = typename T::template rebind<U>;};template <typename T, typename U>constexpr bool HasRebindAlloc(...) {  return false;}template <typename T, typename U>constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) {  return true;}template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)>struct RebindAlloc {  using type = typename RebindFirstArg<T, U>::type;};template <typename T, typename U>struct RebindAlloc<T, U, true> {  using type = typename T::template rebind<U>::other;};}  // namespace memory_internal// -----------------------------------------------------------------------------// Class Template: pointer_traits// -----------------------------------------------------------------------------//// An implementation of C++11's std::pointer_traits.//// Provided for portability on toolchains that have a working C++11 compiler,// but the standard library is lacking in C++11 support. For example, some// version of the Android NDK.//template <typename Ptr>struct pointer_traits {  using pointer = Ptr;  // element_type:  // Ptr::element_type if present. Otherwise T if Ptr is a template  // instantiation Template<T, Args...>  using element_type = typename memory_internal::ElementType<Ptr>::type;  // difference_type:  // Ptr::difference_type if present, otherwise std::ptrdiff_t  using difference_type =      memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr,                                  std::ptrdiff_t>;  // rebind:  // Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a  // template instantiation Template<T, Args...>  template <typename U>  using rebind = typename memory_internal::RebindPtr<Ptr, U>::type;  // pointer_to:  // Calls Ptr::pointer_to(r)  static pointer pointer_to(element_type& r) {  // NOLINT(runtime/references)    return Ptr::pointer_to(r);  }};// Specialization for T*.template <typename T>struct pointer_traits<T*> {  using pointer = T*;  using element_type = T;  using difference_type = std::ptrdiff_t;  template <typename U>  using rebind = U*;  // pointer_to:  // Calls std::addressof(r)  static pointer pointer_to(      element_type& r) noexcept {  // NOLINT(runtime/references)    return std::addressof(r);  }};// -----------------------------------------------------------------------------// Class Template: allocator_traits// -----------------------------------------------------------------------------//// A C++11 compatible implementation of C++17's std::allocator_traits.//template <typename Alloc>struct allocator_traits {  using allocator_type = Alloc;  // value_type:  // Alloc::value_type  using value_type = typename Alloc::value_type;  // pointer:  // Alloc::pointer if present, otherwise value_type*  using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer,                                              Alloc, value_type*>;  // const_pointer:  // Alloc::const_pointer if present, otherwise  // absl::pointer_traits<pointer>::rebind<const value_type>  using const_pointer =      memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc,                                  typename absl::pointer_traits<pointer>::                                      template rebind<const value_type>>;  // void_pointer:  // Alloc::void_pointer if present, otherwise  // absl::pointer_traits<pointer>::rebind<void>  using void_pointer = memory_internal::ExtractOrT<      memory_internal::GetVoidPointer, Alloc,      typename absl::pointer_traits<pointer>::template rebind<void>>;  // const_void_pointer:  // Alloc::const_void_pointer if present, otherwise  // absl::pointer_traits<pointer>::rebind<const void>  using const_void_pointer = memory_internal::ExtractOrT<      memory_internal::GetConstVoidPointer, Alloc,      typename absl::pointer_traits<pointer>::template rebind<const void>>;  // difference_type:  // Alloc::difference_type if present, otherwise  // absl::pointer_traits<pointer>::difference_type  using difference_type = memory_internal::ExtractOrT<      memory_internal::GetDifferenceType, Alloc,      typename absl::pointer_traits<pointer>::difference_type>;  // size_type:  // Alloc::size_type if present, otherwise  // std::make_unsigned<difference_type>::type  using size_type = memory_internal::ExtractOrT<      memory_internal::GetSizeType, Alloc,      typename std::make_unsigned<difference_type>::type>;  // propagate_on_container_copy_assignment:  // Alloc::propagate_on_container_copy_assignment if present, otherwise  // std::false_type  using propagate_on_container_copy_assignment = memory_internal::ExtractOrT<      memory_internal::GetPropagateOnContainerCopyAssignment, Alloc,      std::false_type>;  // propagate_on_container_move_assignment:  // Alloc::propagate_on_container_move_assignment if present, otherwise  // std::false_type  using propagate_on_container_move_assignment = memory_internal::ExtractOrT<      memory_internal::GetPropagateOnContainerMoveAssignment, Alloc,      std::false_type>;  // propagate_on_container_swap:  // Alloc::propagate_on_container_swap if present, otherwise std::false_type  using propagate_on_container_swap =      memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap,                                  Alloc, std::false_type>;  // is_always_equal:  // Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type  using is_always_equal =      memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc,                                  typename std::is_empty<Alloc>::type>;  // rebind_alloc:  // Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc  // is Alloc<U, Args>  template <typename T>  using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type;  // rebind_traits:  // absl::allocator_traits<rebind_alloc<T>>  template <typename T>  using rebind_traits = absl::allocator_traits<rebind_alloc<T>>;  // allocate(Alloc& a, size_type n):  // Calls a.allocate(n)  static pointer allocate(Alloc& a,  // NOLINT(runtime/references)                          size_type n) {    return a.allocate(n);  }  // allocate(Alloc& a, size_type n, const_void_pointer hint):  // Calls a.allocate(n, hint) if possible.  // If not possible, calls a.allocate(n)  static pointer allocate(Alloc& a, size_type n,  // NOLINT(runtime/references)                          const_void_pointer hint) {    return allocate_impl(0, a, n, hint);  }  // deallocate(Alloc& a, pointer p, size_type n):  // Calls a.deallocate(p, n)  static void deallocate(Alloc& a, pointer p,  // NOLINT(runtime/references)                         size_type n) {    a.deallocate(p, n);  }  // construct(Alloc& a, T* p, Args&&... args):  // Calls a.construct(p, std::forward<Args>(args)...) if possible.  // If not possible, calls  //   ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...)  template <typename T, typename... Args>  static void construct(Alloc& a, T* p,  // NOLINT(runtime/references)                        Args&&... args) {    construct_impl(0, a, p, std::forward<Args>(args)...);  }  // destroy(Alloc& a, T* p):  // Calls a.destroy(p) if possible. If not possible, calls p->~T().  template <typename T>  static void destroy(Alloc& a, T* p) {  // NOLINT(runtime/references)    destroy_impl(0, a, p);  }  // max_size(const Alloc& a):  // Returns a.max_size() if possible. If not possible, returns  //   std::numeric_limits<size_type>::max() / sizeof(value_type)  static size_type max_size(const Alloc& a) { return max_size_impl(0, a); }  // select_on_container_copy_construction(const Alloc& a):  // Returns a.select_on_container_copy_construction() if possible.  // If not possible, returns a.  static Alloc select_on_container_copy_construction(const Alloc& a) {    return select_on_container_copy_construction_impl(0, a);  } private:  template <typename A>  static auto allocate_impl(int, A& a,  // NOLINT(runtime/references)                            size_type n, const_void_pointer hint)      -> decltype(a.allocate(n, hint)) {    return a.allocate(n, hint);  }  static pointer allocate_impl(char, Alloc& a,  // NOLINT(runtime/references)                               size_type n, const_void_pointer) {    return a.allocate(n);  }  template <typename A, typename... Args>  static auto construct_impl(int, A& a,  // NOLINT(runtime/references)                             Args&&... args)      -> decltype(a.construct(std::forward<Args>(args)...)) {    a.construct(std::forward<Args>(args)...);  }  template <typename T, typename... Args>  static void construct_impl(char, Alloc&, T* p, Args&&... args) {    ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);  }  template <typename A, typename T>  static auto destroy_impl(int, A& a,  // NOLINT(runtime/references)                           T* p) -> decltype(a.destroy(p)) {    a.destroy(p);  }  template <typename T>  static void destroy_impl(char, Alloc&, T* p) {    p->~T();  }  template <typename A>  static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) {    return a.max_size();  }  static size_type max_size_impl(char, const Alloc&) {    return (std::numeric_limits<size_type>::max)() / sizeof(value_type);  }  template <typename A>  static auto select_on_container_copy_construction_impl(int, const A& a)      -> decltype(a.select_on_container_copy_construction()) {    return a.select_on_container_copy_construction();  }  static Alloc select_on_container_copy_construction_impl(char,                                                          const Alloc& a) {    return a;  }};namespace memory_internal {// This template alias transforms Alloc::is_nothrow into a metafunction with// Alloc as a parameter so it can be used with ExtractOrT<>.template <typename Alloc>using GetIsNothrow = typename Alloc::is_nothrow;}  // namespace memory_internal// ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to// specify whether the default allocation function can throw or never throws.// If the allocation function never throws, user should define it to a non-zero// value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).// If the allocation function can throw, user should leave it undefined or// define it to zero.//// allocator_is_nothrow<Alloc> is a traits class that derives from// Alloc::is_nothrow if present, otherwise std::false_type. It's specialized// for Alloc = std::allocator<T> for any type T according to the state of// ABSL_ALLOCATOR_NOTHROW.//// default_allocator_is_nothrow is a class that derives from std::true_type// when the default allocator (global operator new) never throws, and// std::false_type when it can throw. It is a convenience shorthand for writing// allocator_is_nothrow<std::allocator<T>> (T can be any type).// NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from// the same type for all T, because users should specialize neither// allocator_is_nothrow nor std::allocator.template <typename Alloc>struct allocator_is_nothrow    : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,                                  std::false_type> {};#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROWtemplate <typename T>struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};struct default_allocator_is_nothrow : std::true_type {};#elsestruct default_allocator_is_nothrow : std::false_type {};#endifnamespace memory_internal {template <typename Allocator, typename Iterator, typename... Args>void ConstructRange(Allocator& alloc, Iterator first, Iterator last,                    const Args&... args) {  for (Iterator cur = first; cur != last; ++cur) {    ABSL_INTERNAL_TRY {      std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),                                                  args...);    }    ABSL_INTERNAL_CATCH_ANY {      while (cur != first) {        --cur;        std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));      }      ABSL_INTERNAL_RETHROW;    }  }}template <typename Allocator, typename Iterator, typename InputIterator>void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,               InputIterator last) {  for (Iterator cur = destination; first != last;       static_cast<void>(++cur), static_cast<void>(++first)) {    ABSL_INTERNAL_TRY {      std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),                                                  *first);    }    ABSL_INTERNAL_CATCH_ANY {      while (cur != destination) {        --cur;        std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));      }      ABSL_INTERNAL_RETHROW;    }  }}}  // namespace memory_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_MEMORY_MEMORY_H_
 |