| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/hash/hash.h"#include <array>#include <bitset>#include <cstring>#include <deque>#include <forward_list>#include <functional>#include <iterator>#include <limits>#include <list>#include <map>#include <memory>#include <numeric>#include <random>#include <set>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <utility>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"#include "absl/container/flat_hash_set.h"#include "absl/hash/hash_testing.h"#include "absl/hash/internal/spy_hash_state.h"#include "absl/meta/type_traits.h"#include "absl/numeric/int128.h"#include "absl/strings/cord_test_helpers.h"namespace {using absl::Hash;using absl::hash_internal::SpyHashState;template <typename T>class HashValueIntTest : public testing::Test {};TYPED_TEST_SUITE_P(HashValueIntTest);template <typename T>SpyHashState SpyHash(const T& value) {  return SpyHashState::combine(SpyHashState(), value);}// Helper trait to verify if T is hashable. We use absl::Hash's poison status to// detect it.template <typename T>using is_hashable = std::is_default_constructible<absl::Hash<T>>;TYPED_TEST_P(HashValueIntTest, BasicUsage) {  EXPECT_TRUE((is_hashable<TypeParam>::value));  TypeParam n = 42;  EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));  EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));  EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),            SpyHash(std::numeric_limits<TypeParam>::min()));}TYPED_TEST_P(HashValueIntTest, FastPath) {  // Test the fast-path to make sure the values are the same.  TypeParam n = 42;  EXPECT_EQ(absl::Hash<TypeParam>{}(n),            absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));}REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath);using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,                                uint64_t, size_t>;INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes);enum LegacyEnum { kValue1, kValue2, kValue3 };enum class EnumClass { kValue4, kValue5, kValue6 };TEST(HashValueTest, EnumAndBool) {  EXPECT_TRUE((is_hashable<LegacyEnum>::value));  EXPECT_TRUE((is_hashable<EnumClass>::value));  EXPECT_TRUE((is_hashable<bool>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(true, false)));}TEST(HashValueTest, FloatingPoint) {  EXPECT_TRUE((is_hashable<float>::value));  EXPECT_TRUE((is_hashable<double>::value));  EXPECT_TRUE((is_hashable<long double>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),                      -std::numeric_limits<float>::infinity())));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),                      -std::numeric_limits<double>::infinity())));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      // Add some values with small exponent to test that NORMAL values also      // append their category.      .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,      17 * static_cast<long double>(std::numeric_limits<double>::max()),      std::numeric_limits<long double>::infinity(),      -std::numeric_limits<long double>::infinity())));}TEST(HashValueTest, Pointer) {  EXPECT_TRUE((is_hashable<int*>::value));  int i;  int* ptr = &i;  int* n = nullptr;  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));}TEST(HashValueTest, PointerAlignment) {  // We want to make sure that pointer alignment will not cause bits to be  // stuck.  constexpr size_t kTotalSize = 1 << 20;  std::unique_ptr<char[]> data(new char[kTotalSize]);  constexpr size_t kLog2NumValues = 5;  constexpr size_t kNumValues = 1 << kLog2NumValues;  for (size_t align = 1; align < kTotalSize / kNumValues;       align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {    SCOPED_TRACE(align);    ASSERT_LE(align * kNumValues, kTotalSize);    size_t bits_or = 0;    size_t bits_and = ~size_t{};    for (size_t i = 0; i < kNumValues; ++i) {      size_t hash = absl::Hash<void*>()(data.get() + i * align);      bits_or |= hash;      bits_and &= hash;    }    // Limit the scope to the bits we would be using for Swisstable.    constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;    size_t stuck_bits = (~bits_or | bits_and) & kMask;    EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits;  }}TEST(HashValueTest, PairAndTuple) {  EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));  EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));  EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));  EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),      std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),                      std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),                      std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),                      std::make_tuple(0, 0, -42))));  // Test that tuples of lvalue references work (so we need a few lvalues):  int a = 0, b = 1, c = 17, d = 23;  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));  // Test that tuples of rvalue references work:  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),      std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),      std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),      std::forward_as_tuple(0, 0, -42))));}TEST(HashValueTest, CombineContiguousWorks) {  std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};  std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};  auto vh1 = SpyHash(v1);  auto vh2 = SpyHash(v2);  EXPECT_NE(vh1, vh2);}struct DummyDeleter {  template <typename T>  void operator() (T* ptr) {}};struct SmartPointerEq {  template <typename T, typename U>  bool operator()(const T& t, const U& u) const {    return GetPtr(t) == GetPtr(u);  }  template <typename T>  static auto GetPtr(const T& t) -> decltype(&*t) {    return t ? &*t : nullptr;  }  static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }};TEST(HashValueTest, SmartPointers) {  EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));  EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));  EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));  int i, j;  std::unique_ptr<int, DummyDeleter> unique1(&i);  std::unique_ptr<int, DummyDeleter> unique2(&i);  std::unique_ptr<int, DummyDeleter> unique_other(&j);  std::unique_ptr<int, DummyDeleter> unique_null;  std::shared_ptr<int> shared1(&i, DummyDeleter());  std::shared_ptr<int> shared2(&i, DummyDeleter());  std::shared_ptr<int> shared_other(&j, DummyDeleter());  std::shared_ptr<int> shared_null;  // Sanity check of the Eq function.  ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));  ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));  ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));  ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::forward_as_tuple(&i, nullptr,                    //                            unique1, unique2, unique_null,  //                            absl::make_unique<int>(),       //                            shared1, shared2, shared_null,  //                            std::make_shared<int>()),      SmartPointerEq{}));}TEST(HashValueTest, FunctionPointer) {  using Func = int (*)();  EXPECT_TRUE(is_hashable<Func>::value);  Func p1 = [] { return 2; }, p2 = [] { return 1; };  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(p1, p2, nullptr)));}struct WrapInTuple {  template <typename T>  std::tuple<int, T, size_t> operator()(const T& t) const {    return std::make_tuple(7, t, 0xdeadbeef);  }};absl::Cord FlatCord(absl::string_view sv) {  absl::Cord c(sv);  c.Flatten();  return c;}absl::Cord FragmentedCord(absl::string_view sv) {  if (sv.size() < 2) {    return absl::Cord(sv);  }  size_t halfway = sv.size() / 2;  std::vector<absl::string_view> parts = {sv.substr(0, halfway),                                          sv.substr(halfway)};  return absl::MakeFragmentedCord(parts);}TEST(HashValueTest, Strings) {  EXPECT_TRUE((is_hashable<std::string>::value));  const std::string small = "foo";  const std::string dup = "foofoo";  const std::string large = std::string(2048, 'x');  // multiple of chunk size  const std::string huge = std::string(5000, 'a');   // not a multiple  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(  //      std::string(), absl::string_view(), absl::Cord(),                     //      std::string(""), absl::string_view(""), absl::Cord(""),               //      std::string(small), absl::string_view(small), absl::Cord(small),      //      std::string(dup), absl::string_view(dup), absl::Cord(dup),            //      std::string(large), absl::string_view(large), absl::Cord(large),      //      std::string(huge), absl::string_view(huge), FlatCord(huge),           //      FragmentedCord(huge))));  // Also check that nested types maintain the same hash.  const WrapInTuple t{};  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(  //      t(std::string()), t(absl::string_view()), t(absl::Cord()),            //      t(std::string("")), t(absl::string_view("")), t(absl::Cord("")),      //      t(std::string(small)), t(absl::string_view(small)),                   //          t(absl::Cord(small)),                                             //      t(std::string(dup)), t(absl::string_view(dup)), t(absl::Cord(dup)),   //      t(std::string(large)), t(absl::string_view(large)),                   //          t(absl::Cord(large)),                                             //      t(std::string(huge)), t(absl::string_view(huge)),                     //          t(FlatCord(huge)), t(FragmentedCord(huge)))));  // Make sure that hashing a `const char*` does not use its string-value.  EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),            SpyHash(absl::string_view("ABC")));}TEST(HashValueTest, WString) {  EXPECT_TRUE((is_hashable<std::wstring>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"),      std::wstring(L"Some other different string"),      std::wstring(L"Iñtërnâtiônàlizætiøn"))));}TEST(HashValueTest, U16String) {  EXPECT_TRUE((is_hashable<std::u16string>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"),      std::u16string(u"Some other different string"),      std::u16string(u"Iñtërnâtiônàlizætiøn"))));}TEST(HashValueTest, U32String) {  EXPECT_TRUE((is_hashable<std::u32string>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"),      std::u32string(U"Some other different string"),      std::u32string(U"Iñtërnâtiônàlizætiøn"))));}TEST(HashValueTest, StdArray) {  EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));}TEST(HashValueTest, StdBitset) {  EXPECT_TRUE((is_hashable<std::bitset<257>>::value));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),       std::bitset<2>("11")}));  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));  constexpr int kNumBits = 256;  std::array<std::string, 6> bit_strings;  bit_strings.fill(std::string(kNumBits, '1'));  bit_strings[1][0] = '0';  bit_strings[2][1] = '0';  bit_strings[3][kNumBits / 3] = '0';  bit_strings[4][kNumBits - 2] = '0';  bit_strings[5][kNumBits - 1] = '0';  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      {std::bitset<kNumBits>(bit_strings[0].c_str()),       std::bitset<kNumBits>(bit_strings[1].c_str()),       std::bitset<kNumBits>(bit_strings[2].c_str()),       std::bitset<kNumBits>(bit_strings[3].c_str()),       std::bitset<kNumBits>(bit_strings[4].c_str()),       std::bitset<kNumBits>(bit_strings[5].c_str())}));}  // namespacetemplate <typename T>class HashValueSequenceTest : public testing::Test {};TYPED_TEST_SUITE_P(HashValueSequenceTest);TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {  EXPECT_TRUE((is_hashable<TypeParam>::value));  using ValueType = typename TypeParam::value_type;  auto a = static_cast<ValueType>(0);  auto b = static_cast<ValueType>(23);  auto c = static_cast<ValueType>(42);  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(TypeParam(), TypeParam{}, TypeParam{a, b, c},                      TypeParam{a, b}, TypeParam{b, c})));}REGISTER_TYPED_TEST_CASE_P(HashValueSequenceTest, BasicUsage);using IntSequenceTypes =    testing::Types<std::deque<int>, std::forward_list<int>, std::list<int>,                   std::vector<int>, std::vector<bool>, std::set<int>,                   std::multiset<int>>;INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueSequenceTest, IntSequenceTypes);// Private type that only supports AbslHashValue to make sure our chosen hash// implentation is recursive within absl::Hash.// It uses std::abs() on the value to provide different bitwise representations// of the same logical value.struct Private {  int i;  template <typename H>  friend H AbslHashValue(H h, Private p) {    return H::combine(std::move(h), std::abs(p.i));  }  friend bool operator==(Private a, Private b) {    return std::abs(a.i) == std::abs(b.i);  }  friend std::ostream& operator<<(std::ostream& o, Private p) {    return o << p.i;  }};// Test helper for combine_piecewise_buffer.  It holds a string_view to the// buffer-to-be-hashed.  Its AbslHashValue specialization will split up its// contents at the character offsets requested.class PiecewiseHashTester { public:  // Create a hash view of a buffer to be hashed contiguously.  explicit PiecewiseHashTester(absl::string_view buf)      : buf_(buf), piecewise_(false), split_locations_() {}  // Create a hash view of a buffer to be hashed piecewise, with breaks at the  // given locations.  PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations)      : buf_(buf),        piecewise_(true),        split_locations_(std::move(split_locations)) {}  template <typename H>  friend H AbslHashValue(H h, const PiecewiseHashTester& p) {    if (!p.piecewise_) {      return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size());    }    absl::hash_internal::PiecewiseCombiner combiner;    if (p.split_locations_.empty()) {      h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size());      return combiner.finalize(std::move(h));    }    size_t begin = 0;    for (size_t next : p.split_locations_) {      absl::string_view chunk = p.buf_.substr(begin, next - begin);      h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size());      begin = next;    }    absl::string_view last_chunk = p.buf_.substr(begin);    if (!last_chunk.empty()) {      h = combiner.add_buffer(std::move(h), last_chunk.data(),                              last_chunk.size());    }    return combiner.finalize(std::move(h));  } private:  absl::string_view buf_;  bool piecewise_;  std::set<size_t> split_locations_;};// Dummy object that hashes as two distinct contiguous buffers, "foo" followed// by "bar"struct DummyFooBar {  template <typename H>  friend H AbslHashValue(H h, const DummyFooBar&) {    const char* foo = "foo";    const char* bar = "bar";    h = H::combine_contiguous(std::move(h), foo, 3);    h = H::combine_contiguous(std::move(h), bar, 3);    return h;  }};TEST(HashValueTest, CombinePiecewiseBuffer) {  absl::Hash<PiecewiseHashTester> hash;  // Check that hashing an empty buffer through the piecewise API works.  EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {})));  // Similarly, small buffers should give consistent results  EXPECT_EQ(hash(PiecewiseHashTester("foobar")),            hash(PiecewiseHashTester("foobar", {})));  EXPECT_EQ(hash(PiecewiseHashTester("foobar")),            hash(PiecewiseHashTester("foobar", {3})));  // But hashing "foobar" in pieces gives a different answer than hashing "foo"  // contiguously, then "bar" contiguously.  EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})),            absl::Hash<DummyFooBar>()(DummyFooBar{}));  // Test hashing a large buffer incrementally, broken up in several different  // ways.  Arrange for breaks on and near the stride boundaries to look for  // off-by-one errors in the implementation.  //  // This test is run on a buffer that is a multiple of the stride size, and one  // that isn't.  for (size_t big_buffer_size : {1024 * 2 + 512, 1024 * 3}) {    SCOPED_TRACE(big_buffer_size);    std::string big_buffer;    for (int i = 0; i < big_buffer_size; ++i) {      // Arbitrary string      big_buffer.push_back(32 + (i * (i / 3)) % 64);    }    auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer));    const int possible_breaks = 9;    size_t breaks[possible_breaks] = {1,    512,  1023, 1024, 1025,                                      1536, 2047, 2048, 2049};    for (unsigned test_mask = 0; test_mask < (1u << possible_breaks);         ++test_mask) {      SCOPED_TRACE(test_mask);      std::set<size_t> break_locations;      for (int j = 0; j < possible_breaks; ++j) {        if (test_mask & (1u << j)) {          break_locations.insert(breaks[j]);        }      }      EXPECT_EQ(          hash(PiecewiseHashTester(big_buffer, std::move(break_locations))),          big_buffer_hash);    }  }}TEST(HashValueTest, PrivateSanity) {  // Sanity check that Private is working as the tests below expect it to work.  EXPECT_TRUE(is_hashable<Private>::value);  EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));  EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));}TEST(HashValueTest, Optional) {  EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);  using O = absl::optional<Private>;  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(      std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));}TEST(HashValueTest, Variant) {  using V = absl::variant<Private, std::string>;  EXPECT_TRUE(is_hashable<V>::value);  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_  struct S {};  EXPECT_FALSE(is_hashable<absl::variant<S>>::value);#endif}TEST(HashValueTest, Maps) {  EXPECT_TRUE((is_hashable<std::map<int, std::string>>::value));  using M = std::map<int, std::string>;  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      M{}, M{{0, "foo"}}, M{{1, "foo"}}, M{{0, "bar"}}, M{{1, "bar"}},      M{{0, "foo"}, {42, "bar"}}, M{{1, "foo"}, {42, "bar"}},      M{{1, "foo"}, {43, "bar"}}, M{{1, "foo"}, {43, "baz"}})));  using MM = std::multimap<int, std::string>;  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(      MM{}, MM{{0, "foo"}}, MM{{1, "foo"}}, MM{{0, "bar"}}, MM{{1, "bar"}},      MM{{0, "foo"}, {0, "bar"}}, MM{{0, "bar"}, {0, "foo"}},      MM{{0, "foo"}, {42, "bar"}}, MM{{1, "foo"}, {42, "bar"}},      MM{{1, "foo"}, {1, "foo"}, {43, "bar"}}, MM{{1, "foo"}, {43, "baz"}})));}template <typename T, typename = void>struct IsHashCallable : std::false_type {};template <typename T>struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(                            std::declval<const T&>()))>> : std::true_type {};template <typename T, typename = void>struct IsAggregateInitializable : std::false_type {};template <typename T>struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>    : std::true_type {};TEST(IsHashableTest, ValidHash) {  EXPECT_TRUE((is_hashable<int>::value));  EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);  EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);  EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);  EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);  EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);  EXPECT_TRUE(IsHashCallable<int>::value);  EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);}#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_TEST(IsHashableTest, PoisonHash) {  struct X {};  EXPECT_FALSE((is_hashable<X>::value));  EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);  EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);  EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);  EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);  EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);  EXPECT_FALSE(IsHashCallable<X>::value);#if !defined(__GNUC__) || __GNUC__ < 9  // This doesn't compile on GCC 9.  EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);#endif}#endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_// Hashable types//// These types exist simply to exercise various AbslHashValue behaviors, so// they are named by what their AbslHashValue overload does.struct NoOp {  template <typename HashCode>  friend HashCode AbslHashValue(HashCode h, NoOp n) {    return h;  }};struct EmptyCombine {  template <typename HashCode>  friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {    return HashCode::combine(std::move(h));  }};template <typename Int>struct CombineIterative {  template <typename HashCode>  friend HashCode AbslHashValue(HashCode h, CombineIterative c) {    for (int i = 0; i < 5; ++i) {      h = HashCode::combine(std::move(h), Int(i));    }    return h;  }};template <typename Int>struct CombineVariadic {  template <typename HashCode>  friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {    return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),                             Int(4));  }};enum class InvokeTag {  kUniquelyRepresented,  kHashValue,#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_  kLegacyHash,#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_  kStdHash,  kNone};template <InvokeTag T>using InvokeTagConstant = std::integral_constant<InvokeTag, T>;template <InvokeTag... Tags>struct MinTag;template <InvokeTag a, InvokeTag b, InvokeTag... Tags>struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};template <InvokeTag a>struct MinTag<a> : InvokeTagConstant<a> {};template <InvokeTag... Tags>struct CustomHashType {  explicit CustomHashType(size_t val) : value(val) {}  size_t value;};template <InvokeTag allowed, InvokeTag... tags>struct EnableIfContained    : std::enable_if<absl::disjunction<          std::integral_constant<bool, allowed == tags>...>::value> {};template <    typename H, InvokeTag... Tags,    typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>H AbslHashValue(H state, CustomHashType<Tags...> t) {  static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");  return H::combine(std::move(state),                    t.value + static_cast<int>(InvokeTag::kHashValue));}}  // namespacenamespace absl {ABSL_NAMESPACE_BEGINnamespace hash_internal {template <InvokeTag... Tags>struct is_uniquely_represented<    CustomHashType<Tags...>,    typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>    : std::true_type {};}  // namespace hash_internalABSL_NAMESPACE_END}  // namespace absl#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {template <InvokeTag... Tags>struct hash<CustomHashType<Tags...>> {  template <InvokeTag... TagsIn, typename = typename EnableIfContained<                                     InvokeTag::kLegacyHash, TagsIn...>::type>  size_t operator()(CustomHashType<TagsIn...> t) const {    static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");    return t.value + static_cast<int>(InvokeTag::kLegacyHash);  }};}  // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_namespace std {template <InvokeTag... Tags>  // NOLINTstruct hash<CustomHashType<Tags...>> {  template <InvokeTag... TagsIn, typename = typename EnableIfContained<                                     InvokeTag::kStdHash, TagsIn...>::type>  size_t operator()(CustomHashType<TagsIn...> t) const {    static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");    return t.value + static_cast<int>(InvokeTag::kStdHash);  }};}  // namespace stdnamespace {template <typename... T>void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {  using type = CustomHashType<T::value...>;  SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));  EXPECT_TRUE(is_hashable<type>());  EXPECT_TRUE(is_hashable<const type>());  EXPECT_TRUE(is_hashable<const type&>());  const size_t offset = static_cast<int>(std::min({T::value...}));  EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset}));}void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_  // is_hashable is false if we don't support any of the hooks.  using type = CustomHashType<>;  EXPECT_FALSE(is_hashable<type>());  EXPECT_FALSE(is_hashable<const type>());  EXPECT_FALSE(is_hashable<const type&>());#endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_}template <InvokeTag Tag, typename... T>void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {  constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);  TestCustomHashType(InvokeTagConstant<next>(), tag, t...);  TestCustomHashType(InvokeTagConstant<next>(), t...);}TEST(HashTest, CustomHashType) {  TestCustomHashType(InvokeTagConstant<InvokeTag{}>());}TEST(HashTest, NoOpsAreEquivalent) {  EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));  EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));}template <typename T>class HashIntTest : public testing::Test {};TYPED_TEST_SUITE_P(HashIntTest);TYPED_TEST_P(HashIntTest, BasicUsage) {  EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));  EXPECT_NE(Hash<NoOp>()({}),            Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));  if (std::numeric_limits<TypeParam>::min() != 0) {    EXPECT_NE(Hash<NoOp>()({}),              Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));  }  EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),            Hash<CombineVariadic<TypeParam>>()({}));}REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage);using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,                                uint64_t, size_t>;INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes);struct StructWithPadding {  char c;  int i;  template <typename H>  friend H AbslHashValue(H hash_state, const StructWithPadding& s) {    return H::combine(std::move(hash_state), s.c, s.i);  }};static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),              "StructWithPadding doesn't have padding");static_assert(std::is_standard_layout<StructWithPadding>::value, "");// This check has to be disabled because libstdc++ doesn't support it.// static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");template <typename T>struct ArraySlice {  T* begin;  T* end;  template <typename H>  friend H AbslHashValue(H hash_state, const ArraySlice& slice) {    for (auto t = slice.begin; t != slice.end; ++t) {      hash_state = H::combine(std::move(hash_state), *t);    }    return hash_state;  }};TEST(HashTest, HashNonUniquelyRepresentedType) {  // Create equal StructWithPadding objects that are known to have non-equal  // padding bytes.  static const size_t kNumStructs = 10;  unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];  std::memset(buffer1, 0, sizeof(buffer1));  auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);  unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];  std::memset(buffer2, 255, sizeof(buffer2));  auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);  for (int i = 0; i < kNumStructs; ++i) {    SCOPED_TRACE(i);    s1[i].c = s2[i].c = '0' + i;    s1[i].i = s2[i].i = i;    ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),                        buffer2 + i * sizeof(StructWithPadding),                        sizeof(StructWithPadding)) == 0)        << "Bug in test code: objects do not have unequal"        << " object representations";  }  EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));  EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),            Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));}TEST(HashTest, StandardHashContainerUsage) {  std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},                                                         {42, "bar"}};  EXPECT_NE(map.find(0), map.end());  EXPECT_EQ(map.find(1), map.end());  EXPECT_NE(map.find(0u), map.end());}struct ConvertibleFromNoOp {  ConvertibleFromNoOp(NoOp) {}  // NOLINT(runtime/explicit)  template <typename H>  friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {    return H::combine(std::move(hash_state), 1);  }};TEST(HashTest, HeterogeneousCall) {  EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),            Hash<NoOp>()(NoOp()));}TEST(IsUniquelyRepresentedTest, SanityTest) {  using absl::hash_internal::is_uniquely_represented;  EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);  EXPECT_TRUE(is_uniquely_represented<int>::value);  EXPECT_FALSE(is_uniquely_represented<bool>::value);  EXPECT_FALSE(is_uniquely_represented<int*>::value);}struct IntAndString {  int i;  std::string s;  template <typename H>  friend H AbslHashValue(H hash_state, IntAndString int_and_string) {    return H::combine(std::move(hash_state), int_and_string.s,                      int_and_string.i);  }};TEST(HashTest, SmallValueOn64ByteBoundary) {  Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});}struct TypeErased {  size_t n;  template <typename H>  friend H AbslHashValue(H hash_state, const TypeErased& v) {    v.HashValue(absl::HashState::Create(&hash_state));    return hash_state;  }  void HashValue(absl::HashState state) const {    absl::HashState::combine(std::move(state), n);  }};TEST(HashTest, TypeErased) {  EXPECT_TRUE((is_hashable<TypeErased>::value));  EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value));  EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7}));  EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13}));  EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)),            SpyHash(std::make_pair(size_t{7}, 17)));}struct ValueWithBoolConversion {  operator bool() const { return false; }  int i;};}  // namespacenamespace std {template <>struct hash<ValueWithBoolConversion> {  size_t operator()(ValueWithBoolConversion v) { return v.i; }};}  // namespace stdnamespace {TEST(HashTest, DoesNotUseImplicitConversionsToBool) {  EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),            absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));}}  // namespace
 |