| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460 | 
							- // Copyright 2018 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
 
- #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
 
- #include <cassert>
 
- #include <cstddef>
 
- #include <memory>
 
- #include <new>
 
- #include <tuple>
 
- #include <type_traits>
 
- #include <utility>
 
- #include "absl/base/config.h"
 
- #include "absl/memory/memory.h"
 
- #include "absl/meta/type_traits.h"
 
- #include "absl/utility/utility.h"
 
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
 
- #include <sanitizer/asan_interface.h>
 
- #endif
 
- #ifdef ABSL_HAVE_MEMORY_SANITIZER
 
- #include <sanitizer/msan_interface.h>
 
- #endif
 
- namespace absl {
 
- ABSL_NAMESPACE_BEGIN
 
- namespace container_internal {
 
- template <size_t Alignment>
 
- struct alignas(Alignment) AlignedType {};
 
- // Allocates at least n bytes aligned to the specified alignment.
 
- // Alignment must be a power of 2. It must be positive.
 
- //
 
- // Note that many allocators don't honor alignment requirements above certain
 
- // threshold (usually either alignof(std::max_align_t) or alignof(void*)).
 
- // Allocate() doesn't apply alignment corrections. If the underlying allocator
 
- // returns insufficiently alignment pointer, that's what you are going to get.
 
- template <size_t Alignment, class Alloc>
 
- void* Allocate(Alloc* alloc, size_t n) {
 
-   static_assert(Alignment > 0, "");
 
-   assert(n && "n must be positive");
 
-   using M = AlignedType<Alignment>;
 
-   using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
 
-   using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
 
-   // On macOS, "mem_alloc" is a #define with one argument defined in
 
-   // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
 
-   // with the "foo(bar)" syntax.
 
-   A my_mem_alloc(*alloc);
 
-   void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
 
-   assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
 
-          "allocator does not respect alignment");
 
-   return p;
 
- }
 
- // The pointer must have been previously obtained by calling
 
- // Allocate<Alignment>(alloc, n).
 
- template <size_t Alignment, class Alloc>
 
- void Deallocate(Alloc* alloc, void* p, size_t n) {
 
-   static_assert(Alignment > 0, "");
 
-   assert(n && "n must be positive");
 
-   using M = AlignedType<Alignment>;
 
-   using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
 
-   using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
 
-   // On macOS, "mem_alloc" is a #define with one argument defined in
 
-   // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
 
-   // with the "foo(bar)" syntax.
 
-   A my_mem_alloc(*alloc);
 
-   AT::deallocate(my_mem_alloc, static_cast<M*>(p),
 
-                  (n + sizeof(M) - 1) / sizeof(M));
 
- }
 
- namespace memory_internal {
 
- // Constructs T into uninitialized storage pointed by `ptr` using the args
 
- // specified in the tuple.
 
- template <class Alloc, class T, class Tuple, size_t... I>
 
- void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
 
-                             absl::index_sequence<I...>) {
 
-   absl::allocator_traits<Alloc>::construct(
 
-       *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
 
- }
 
- template <class T, class F>
 
- struct WithConstructedImplF {
 
-   template <class... Args>
 
-   decltype(std::declval<F>()(std::declval<T>())) operator()(
 
-       Args&&... args) const {
 
-     return std::forward<F>(f)(T(std::forward<Args>(args)...));
 
-   }
 
-   F&& f;
 
- };
 
- template <class T, class Tuple, size_t... Is, class F>
 
- decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
 
-     Tuple&& t, absl::index_sequence<Is...>, F&& f) {
 
-   return WithConstructedImplF<T, F>{std::forward<F>(f)}(
 
-       std::get<Is>(std::forward<Tuple>(t))...);
 
- }
 
- template <class T, size_t... Is>
 
- auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
 
-     -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
 
-   return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
 
- }
 
- // Returns a tuple of references to the elements of the input tuple. T must be a
 
- // tuple.
 
- template <class T>
 
- auto TupleRef(T&& t) -> decltype(
 
-     TupleRefImpl(std::forward<T>(t),
 
-                  absl::make_index_sequence<
 
-                      std::tuple_size<typename std::decay<T>::type>::value>())) {
 
-   return TupleRefImpl(
 
-       std::forward<T>(t),
 
-       absl::make_index_sequence<
 
-           std::tuple_size<typename std::decay<T>::type>::value>());
 
- }
 
- template <class F, class K, class V>
 
- decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
 
-                            std::declval<std::tuple<K>>(), std::declval<V>()))
 
- DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
 
-   const auto& key = std::get<0>(p.first);
 
-   return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
 
-                             std::move(p.second));
 
- }
 
- }  // namespace memory_internal
 
- // Constructs T into uninitialized storage pointed by `ptr` using the args
 
- // specified in the tuple.
 
- template <class Alloc, class T, class Tuple>
 
- void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
 
-   memory_internal::ConstructFromTupleImpl(
 
-       alloc, ptr, std::forward<Tuple>(t),
 
-       absl::make_index_sequence<
 
-           std::tuple_size<typename std::decay<Tuple>::type>::value>());
 
- }
 
- // Constructs T using the args specified in the tuple and calls F with the
 
- // constructed value.
 
- template <class T, class Tuple, class F>
 
- decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
 
-     Tuple&& t, F&& f) {
 
-   return memory_internal::WithConstructedImpl<T>(
 
-       std::forward<Tuple>(t),
 
-       absl::make_index_sequence<
 
-           std::tuple_size<typename std::decay<Tuple>::type>::value>(),
 
-       std::forward<F>(f));
 
- }
 
- // Given arguments of an std::pair's consructor, PairArgs() returns a pair of
 
- // tuples with references to the passed arguments. The tuples contain
 
- // constructor arguments for the first and the second elements of the pair.
 
- //
 
- // The following two snippets are equivalent.
 
- //
 
- // 1. std::pair<F, S> p(args...);
 
- //
 
- // 2. auto a = PairArgs(args...);
 
- //    std::pair<F, S> p(std::piecewise_construct,
 
- //                      std::move(p.first), std::move(p.second));
 
- inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
 
- template <class F, class S>
 
- std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
 
-   return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
 
-           std::forward_as_tuple(std::forward<S>(s))};
 
- }
 
- template <class F, class S>
 
- std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
 
-     const std::pair<F, S>& p) {
 
-   return PairArgs(p.first, p.second);
 
- }
 
- template <class F, class S>
 
- std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
 
-   return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
 
- }
 
- template <class F, class S>
 
- auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
 
-     -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
 
-                                memory_internal::TupleRef(std::forward<S>(s)))) {
 
-   return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
 
-                         memory_internal::TupleRef(std::forward<S>(s)));
 
- }
 
- // A helper function for implementing apply() in map policies.
 
- template <class F, class... Args>
 
- auto DecomposePair(F&& f, Args&&... args)
 
-     -> decltype(memory_internal::DecomposePairImpl(
 
-         std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
 
-   return memory_internal::DecomposePairImpl(
 
-       std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
 
- }
 
- // A helper function for implementing apply() in set policies.
 
- template <class F, class Arg>
 
- decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
 
- DecomposeValue(F&& f, Arg&& arg) {
 
-   const auto& key = arg;
 
-   return std::forward<F>(f)(key, std::forward<Arg>(arg));
 
- }
 
- // Helper functions for asan and msan.
 
- inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
 
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
 
-   ASAN_POISON_MEMORY_REGION(m, s);
 
- #endif
 
- #ifdef ABSL_HAVE_MEMORY_SANITIZER
 
-   __msan_poison(m, s);
 
- #endif
 
-   (void)m;
 
-   (void)s;
 
- }
 
- inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
 
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
 
-   ASAN_UNPOISON_MEMORY_REGION(m, s);
 
- #endif
 
- #ifdef ABSL_HAVE_MEMORY_SANITIZER
 
-   __msan_unpoison(m, s);
 
- #endif
 
-   (void)m;
 
-   (void)s;
 
- }
 
- template <typename T>
 
- inline void SanitizerPoisonObject(const T* object) {
 
-   SanitizerPoisonMemoryRegion(object, sizeof(T));
 
- }
 
- template <typename T>
 
- inline void SanitizerUnpoisonObject(const T* object) {
 
-   SanitizerUnpoisonMemoryRegion(object, sizeof(T));
 
- }
 
- namespace memory_internal {
 
- // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
 
- // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
 
- // offsetof(Pair, second) respectively. Otherwise they are -1.
 
- //
 
- // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
 
- // type, which is non-portable.
 
- template <class Pair, class = std::true_type>
 
- struct OffsetOf {
 
-   static constexpr size_t kFirst = static_cast<size_t>(-1);
 
-   static constexpr size_t kSecond = static_cast<size_t>(-1);
 
- };
 
- template <class Pair>
 
- struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
 
-   static constexpr size_t kFirst = offsetof(Pair, first);
 
-   static constexpr size_t kSecond = offsetof(Pair, second);
 
- };
 
- template <class K, class V>
 
- struct IsLayoutCompatible {
 
-  private:
 
-   struct Pair {
 
-     K first;
 
-     V second;
 
-   };
 
-   // Is P layout-compatible with Pair?
 
-   template <class P>
 
-   static constexpr bool LayoutCompatible() {
 
-     return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
 
-            alignof(P) == alignof(Pair) &&
 
-            memory_internal::OffsetOf<P>::kFirst ==
 
-                memory_internal::OffsetOf<Pair>::kFirst &&
 
-            memory_internal::OffsetOf<P>::kSecond ==
 
-                memory_internal::OffsetOf<Pair>::kSecond;
 
-   }
 
-  public:
 
-   // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
 
-   // then it is safe to store them in a union and read from either.
 
-   static constexpr bool value = std::is_standard_layout<K>() &&
 
-                                 std::is_standard_layout<Pair>() &&
 
-                                 memory_internal::OffsetOf<Pair>::kFirst == 0 &&
 
-                                 LayoutCompatible<std::pair<K, V>>() &&
 
-                                 LayoutCompatible<std::pair<const K, V>>();
 
- };
 
- }  // namespace memory_internal
 
- // The internal storage type for key-value containers like flat_hash_map.
 
- //
 
- // It is convenient for the value_type of a flat_hash_map<K, V> to be
 
- // pair<const K, V>; the "const K" prevents accidental modification of the key
 
- // when dealing with the reference returned from find() and similar methods.
 
- // However, this creates other problems; we want to be able to emplace(K, V)
 
- // efficiently with move operations, and similarly be able to move a
 
- // pair<K, V> in insert().
 
- //
 
- // The solution is this union, which aliases the const and non-const versions
 
- // of the pair. This also allows flat_hash_map<const K, V> to work, even though
 
- // that has the same efficiency issues with move in emplace() and insert() -
 
- // but people do it anyway.
 
- //
 
- // If kMutableKeys is false, only the value member can be accessed.
 
- //
 
- // If kMutableKeys is true, key can be accessed through all slots while value
 
- // and mutable_value must be accessed only via INITIALIZED slots. Slots are
 
- // created and destroyed via mutable_value so that the key can be moved later.
 
- //
 
- // Accessing one of the union fields while the other is active is safe as
 
- // long as they are layout-compatible, which is guaranteed by the definition of
 
- // kMutableKeys. For C++11, the relevant section of the standard is
 
- // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
 
- template <class K, class V>
 
- union map_slot_type {
 
-   map_slot_type() {}
 
-   ~map_slot_type() = delete;
 
-   using value_type = std::pair<const K, V>;
 
-   using mutable_value_type =
 
-       std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
 
-   value_type value;
 
-   mutable_value_type mutable_value;
 
-   absl::remove_const_t<K> key;
 
- };
 
- template <class K, class V>
 
- struct map_slot_policy {
 
-   using slot_type = map_slot_type<K, V>;
 
-   using value_type = std::pair<const K, V>;
 
-   using mutable_value_type = std::pair<K, V>;
 
-  private:
 
-   static void emplace(slot_type* slot) {
 
-     // The construction of union doesn't do anything at runtime but it allows us
 
-     // to access its members without violating aliasing rules.
 
-     new (slot) slot_type;
 
-   }
 
-   // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
 
-   // or the other via slot_type. We are also free to access the key via
 
-   // slot_type::key in this case.
 
-   using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
 
-  public:
 
-   static value_type& element(slot_type* slot) { return slot->value; }
 
-   static const value_type& element(const slot_type* slot) {
 
-     return slot->value;
 
-   }
 
-   // When C++17 is available, we can use std::launder to provide mutable
 
-   // access to the key for use in node handle.
 
- #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
 
-   static K& mutable_key(slot_type* slot) {
 
-     // Still check for kMutableKeys so that we can avoid calling std::launder
 
-     // unless necessary because it can interfere with optimizations.
 
-     return kMutableKeys::value ? slot->key
 
-                                : *std::launder(const_cast<K*>(
 
-                                      std::addressof(slot->value.first)));
 
-   }
 
- #else  // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606)
 
-   static const K& mutable_key(slot_type* slot) { return key(slot); }
 
- #endif
 
-   static const K& key(const slot_type* slot) {
 
-     return kMutableKeys::value ? slot->key : slot->value.first;
 
-   }
 
-   template <class Allocator, class... Args>
 
-   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
 
-     emplace(slot);
 
-     if (kMutableKeys::value) {
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
 
-                                                    std::forward<Args>(args)...);
 
-     } else {
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
 
-                                                    std::forward<Args>(args)...);
 
-     }
 
-   }
 
-   // Construct this slot by moving from another slot.
 
-   template <class Allocator>
 
-   static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
 
-     emplace(slot);
 
-     if (kMutableKeys::value) {
 
-       absl::allocator_traits<Allocator>::construct(
 
-           *alloc, &slot->mutable_value, std::move(other->mutable_value));
 
-     } else {
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
 
-                                                    std::move(other->value));
 
-     }
 
-   }
 
-   template <class Allocator>
 
-   static void destroy(Allocator* alloc, slot_type* slot) {
 
-     if (kMutableKeys::value) {
 
-       absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
 
-     } else {
 
-       absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
 
-     }
 
-   }
 
-   template <class Allocator>
 
-   static void transfer(Allocator* alloc, slot_type* new_slot,
 
-                        slot_type* old_slot) {
 
-     emplace(new_slot);
 
-     if (kMutableKeys::value) {
 
-       absl::allocator_traits<Allocator>::construct(
 
-           *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
 
-     } else {
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
 
-                                                    std::move(old_slot->value));
 
-     }
 
-     destroy(alloc, old_slot);
 
-   }
 
-   template <class Allocator>
 
-   static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
 
-     if (kMutableKeys::value) {
 
-       using std::swap;
 
-       swap(a->mutable_value, b->mutable_value);
 
-     } else {
 
-       value_type tmp = std::move(a->value);
 
-       absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
 
-                                                    std::move(b->value));
 
-       absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
 
-                                                    std::move(tmp));
 
-     }
 
-   }
 
-   template <class Allocator>
 
-   static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
 
-     if (kMutableKeys::value) {
 
-       dest->mutable_value = std::move(src->mutable_value);
 
-     } else {
 
-       absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
 
-       absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
 
-                                                    std::move(src->value));
 
-     }
 
-   }
 
- };
 
- }  // namespace container_internal
 
- ABSL_NAMESPACE_END
 
- }  // namespace absl
 
- #endif  // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
 
 
  |