| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/strings/charconv.h"#include <algorithm>#include <cassert>#include <cmath>#include <cstring>#include "absl/base/casts.h"#include "absl/base/internal/bits.h"#include "absl/numeric/int128.h"#include "absl/strings/internal/charconv_bigint.h"#include "absl/strings/internal/charconv_parse.h"// The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating// point numbers have the same endianness in memory as a bitfield struct// containing the corresponding parts.//// When set, we replace calls to ldexp() with manual bit packing, which is// faster and is unaffected by floating point environment.#ifdef ABSL_BIT_PACK_FLOATS#error ABSL_BIT_PACK_FLOATS cannot be directly set#elif defined(__x86_64__) || defined(_M_X64)#define ABSL_BIT_PACK_FLOATS 1#endif// A note about subnormals://// The code below talks about "normals" and "subnormals".  A normal IEEE float// has a fixed-width mantissa and power of two exponent.  For example, a normal// `double` has a 53-bit mantissa.  Because the high bit is always 1, it is not// stored in the representation.  The implicit bit buys an extra bit of// resolution in the datatype.//// The downside of this scheme is that there is a large gap between DBL_MIN and// zero.  (Large, at least, relative to the different between DBL_MIN and the// next representable number).  This gap is softened by the "subnormal" numbers,// which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd// bit.  An all-bits-zero exponent in the encoding represents subnormals.  (Zero// is represented as a subnormal with an all-bits-zero mantissa.)//// The code below, in calculations, represents the mantissa as a uint64_t.  The// end result normally has the 53rd bit set.  It represents subnormals by using// narrower mantissas.namespace absl {ABSL_NAMESPACE_BEGINnamespace {template <typename FloatType>struct FloatTraits;template <>struct FloatTraits<double> {  // The number of mantissa bits in the given float type.  This includes the  // implied high bit.  static constexpr int kTargetMantissaBits = 53;  // The largest supported IEEE exponent, in our integral mantissa  // representation.  //  // If `m` is the largest possible int kTargetMantissaBits bits wide, then  // m * 2**kMaxExponent is exactly equal to DBL_MAX.  static constexpr int kMaxExponent = 971;  // The smallest supported IEEE normal exponent, in our integral mantissa  // representation.  //  // If `m` is the smallest possible int kTargetMantissaBits bits wide, then  // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.  static constexpr int kMinNormalExponent = -1074;  static double MakeNan(const char* tagp) {    // Support nan no matter which namespace it's in.  Some platforms    // incorrectly don't put it in namespace std.    using namespace std;  // NOLINT    return nan(tagp);  }  // Builds a nonzero floating point number out of the provided parts.  //  // This is intended to do the same operation as ldexp(mantissa, exponent),  // but using purely integer math, to avoid -ffastmath and floating  // point environment issues.  Using type punning is also faster. We fall back  // to ldexp on a per-platform basis for portability.  //  // `exponent` must be between kMinNormalExponent and kMaxExponent.  //  // `mantissa` must either be exactly kTargetMantissaBits wide, in which case  // a normal value is made, or it must be less narrow than that, in which case  // `exponent` must be exactly kMinNormalExponent, and a subnormal value is  // made.  static double Make(uint64_t mantissa, int exponent, bool sign) {#ifndef ABSL_BIT_PACK_FLOATS    // Support ldexp no matter which namespace it's in.  Some platforms    // incorrectly don't put it in namespace std.    using namespace std;  // NOLINT    return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);#else    constexpr uint64_t kMantissaMask =        (uint64_t(1) << (kTargetMantissaBits - 1)) - 1;    uint64_t dbl = static_cast<uint64_t>(sign) << 63;    if (mantissa > kMantissaMask) {      // Normal value.      // Adjust by 1023 for the exponent representation bias, and an additional      // 52 due to the implied decimal point in the IEEE mantissa represenation.      dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52;      mantissa &= kMantissaMask;    } else {      // subnormal value      assert(exponent == kMinNormalExponent);    }    dbl += mantissa;    return absl::bit_cast<double>(dbl);#endif  // ABSL_BIT_PACK_FLOATS  }};// Specialization of floating point traits for the `float` type.  See the// FloatTraits<double> specialization above for meaning of each of the following// members and methods.template <>struct FloatTraits<float> {  static constexpr int kTargetMantissaBits = 24;  static constexpr int kMaxExponent = 104;  static constexpr int kMinNormalExponent = -149;  static float MakeNan(const char* tagp) {    // Support nanf no matter which namespace it's in.  Some platforms    // incorrectly don't put it in namespace std.    using namespace std;  // NOLINT    return nanf(tagp);  }  static float Make(uint32_t mantissa, int exponent, bool sign) {#ifndef ABSL_BIT_PACK_FLOATS    // Support ldexpf no matter which namespace it's in.  Some platforms    // incorrectly don't put it in namespace std.    using namespace std;  // NOLINT    return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);#else    constexpr uint32_t kMantissaMask =        (uint32_t(1) << (kTargetMantissaBits - 1)) - 1;    uint32_t flt = static_cast<uint32_t>(sign) << 31;    if (mantissa > kMantissaMask) {      // Normal value.      // Adjust by 127 for the exponent representation bias, and an additional      // 23 due to the implied decimal point in the IEEE mantissa represenation.      flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23;      mantissa &= kMantissaMask;    } else {      // subnormal value      assert(exponent == kMinNormalExponent);    }    flt += mantissa;    return absl::bit_cast<float>(flt);#endif  // ABSL_BIT_PACK_FLOATS  }};// Decimal-to-binary conversions require coercing powers of 10 into a mantissa// and a power of 2.  The two helper functions Power10Mantissa(n) and// Power10Exponent(n) perform this task.  Together, these represent a hand-// rolled floating point value which is equal to or just less than 10**n.//// The return values satisfy two range guarantees:////   Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n//     < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)////   2**63 <= Power10Mantissa(n) < 2**64.//// Lookups into the power-of-10 table must first check the Power10Overflow() and// Power10Underflow() functions, to avoid out-of-bounds table access.//// Indexes into these tables are biased by -kPower10TableMin, and the table has// values in the range [kPower10TableMin, kPower10TableMax].extern const uint64_t kPower10MantissaTable[];extern const int16_t kPower10ExponentTable[];// The smallest allowed value for use with the Power10Mantissa() and// Power10Exponent() functions below.  (If a smaller exponent is needed in// calculations, the end result is guaranteed to underflow.)constexpr int kPower10TableMin = -342;// The largest allowed value for use with the Power10Mantissa() and// Power10Exponent() functions below.  (If a smaller exponent is needed in// calculations, the end result is guaranteed to overflow.)constexpr int kPower10TableMax = 308;uint64_t Power10Mantissa(int n) {  return kPower10MantissaTable[n - kPower10TableMin];}int Power10Exponent(int n) {  return kPower10ExponentTable[n - kPower10TableMin];}// Returns true if n is large enough that 10**n always results in an IEEE// overflow.bool Power10Overflow(int n) { return n > kPower10TableMax; }// Returns true if n is small enough that 10**n times a ParsedFloat mantissa// always results in an IEEE underflow.bool Power10Underflow(int n) { return n < kPower10TableMin; }// Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal// to 10**n numerically.  Put another way, this returns true if there is no// truncation error in Power10Mantissa(n).bool Power10Exact(int n) { return n >= 0 && n <= 27; }// Sentinel exponent values for representing numbers too large or too close to// zero to represent in a double.constexpr int kOverflow = 99999;constexpr int kUnderflow = -99999;// Struct representing the calculated conversion result of a positive (nonzero)// floating point number.//// The calculated number is mantissa * 2**exponent (mantissa is treated as an// integer.)  `mantissa` is chosen to be the correct width for the IEEE float// representation being calculated.  (`mantissa` will always have the same bit// width for normal values, and narrower bit widths for subnormals.)//// If the result of conversion was an underflow or overflow, exponent is set// to kUnderflow or kOverflow.struct CalculatedFloat {  uint64_t mantissa = 0;  int exponent = 0;};// Returns the bit width of the given uint128.  (Equivalently, returns 128// minus the number of leading zero bits.)int BitWidth(uint128 value) {  if (Uint128High64(value) == 0) {    return 64 - base_internal::CountLeadingZeros64(Uint128Low64(value));  }  return 128 - base_internal::CountLeadingZeros64(Uint128High64(value));}// Calculates how far to the right a mantissa needs to be shifted to create a// properly adjusted mantissa for an IEEE floating point number.//// `mantissa_width` is the bit width of the mantissa to be shifted, and// `binary_exponent` is the exponent of the number before the shift.//// This accounts for subnormal values, and will return a larger-than-normal// shift if binary_exponent would otherwise be too low.template <typename FloatType>int NormalizedShiftSize(int mantissa_width, int binary_exponent) {  const int normal_shift =      mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;  const int minimum_shift =      FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;  return std::max(normal_shift, minimum_shift);}// Right shifts a uint128 so that it has the requested bit width.  (The// resulting value will have 128 - bit_width leading zeroes.)  The initial// `value` must be wider than the requested bit width.//// Returns the number of bits shifted.int TruncateToBitWidth(int bit_width, uint128* value) {  const int current_bit_width = BitWidth(*value);  const int shift = current_bit_width - bit_width;  *value >>= shift;  return shift;}// Checks if the given ParsedFloat represents one of the edge cases that are// not dependent on number base: zero, infinity, or NaN.  If so, sets *value// the appropriate double, and returns true.template <typename FloatType>bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,                    FloatType* value) {  if (input.type == strings_internal::FloatType::kNan) {    // A bug in both clang and gcc would cause the compiler to optimize away the    // buffer we are building below.  Declaring the buffer volatile avoids the    // issue, and has no measurable performance impact in microbenchmarks.    //    // https://bugs.llvm.org/show_bug.cgi?id=37778    // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113    constexpr ptrdiff_t kNanBufferSize = 128;    volatile char n_char_sequence[kNanBufferSize];    if (input.subrange_begin == nullptr) {      n_char_sequence[0] = '\0';    } else {      ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;      nan_size = std::min(nan_size, kNanBufferSize - 1);      std::copy_n(input.subrange_begin, nan_size, n_char_sequence);      n_char_sequence[nan_size] = '\0';    }    char* nan_argument = const_cast<char*>(n_char_sequence);    *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)                      : FloatTraits<FloatType>::MakeNan(nan_argument);    return true;  }  if (input.type == strings_internal::FloatType::kInfinity) {    *value = negative ? -std::numeric_limits<FloatType>::infinity()                      : std::numeric_limits<FloatType>::infinity();    return true;  }  if (input.mantissa == 0) {    *value = negative ? -0.0 : 0.0;    return true;  }  return false;}// Given a CalculatedFloat result of a from_chars conversion, generate the// correct output values.//// CalculatedFloat can represent an underflow or overflow, in which case the// error code in *result is set.  Otherwise, the calculated floating point// number is stored in *value.template <typename FloatType>void EncodeResult(const CalculatedFloat& calculated, bool negative,                  absl::from_chars_result* result, FloatType* value) {  if (calculated.exponent == kOverflow) {    result->ec = std::errc::result_out_of_range;    *value = negative ? -std::numeric_limits<FloatType>::max()                      : std::numeric_limits<FloatType>::max();    return;  } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {    result->ec = std::errc::result_out_of_range;    *value = negative ? -0.0 : 0.0;    return;  }  *value = FloatTraits<FloatType>::Make(calculated.mantissa,                                        calculated.exponent, negative);}// Returns the given uint128 shifted to the right by `shift` bits, and rounds// the remaining bits using round_to_nearest logic.  The value is returned as a// uint64_t, since this is the type used by this library for storing calculated// floating point mantissas.//// It is expected that the width of the input value shifted by `shift` will// be the correct bit-width for the target mantissa, which is strictly narrower// than a uint64_t.//// If `input_exact` is false, then a nonzero error epsilon is assumed.  For// rounding purposes, the true value being rounded is strictly greater than the// input value.  The error may represent a single lost carry bit.//// When input_exact, shifted bits of the form 1000000... represent a tie, which// is broken by rounding to even -- the rounding direction is chosen so the low// bit of the returned value is 0.//// When !input_exact, shifted bits of the form 10000000... represent a value// strictly greater than one half (due to the error epsilon), and so ties are// always broken by rounding up.//// When !input_exact, shifted bits of the form 01111111... are uncertain;// the true value may or may not be greater than 10000000..., due to the// possible lost carry bit.  The correct rounding direction is unknown.  In this// case, the result is rounded down, and `output_exact` is set to false.//// Zero and negative values of `shift` are accepted, in which case the word is// shifted left, as necessary.uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,                            bool* output_exact) {  if (shift <= 0) {    *output_exact = input_exact;    return static_cast<uint64_t>(value << -shift);  }  if (shift >= 128) {    // Exponent is so small that we are shifting away all significant bits.    // Answer will not be representable, even as a subnormal, so return a zero    // mantissa (which represents underflow).    *output_exact = true;    return 0;  }  *output_exact = true;  const uint128 shift_mask = (uint128(1) << shift) - 1;  const uint128 halfway_point = uint128(1) << (shift - 1);  const uint128 shifted_bits = value & shift_mask;  value >>= shift;  if (shifted_bits > halfway_point) {    // Shifted bits greater than 10000... require rounding up.    return static_cast<uint64_t>(value + 1);  }  if (shifted_bits == halfway_point) {    // In exact mode, shifted bits of 10000... mean we're exactly halfway    // between two numbers, and we must round to even.  So only round up if    // the low bit of `value` is set.    //    // In inexact mode, the nonzero error means the actual value is greater    // than the halfway point and we must alway round up.    if ((value & 1) == 1 || !input_exact) {      ++value;    }    return static_cast<uint64_t>(value);  }  if (!input_exact && shifted_bits == halfway_point - 1) {    // Rounding direction is unclear, due to error.    *output_exact = false;  }  // Otherwise, round down.  return static_cast<uint64_t>(value);}// Checks if a floating point guess needs to be rounded up, using high precision// math.//// `guess_mantissa` and `guess_exponent` represent a candidate guess for the// number represented by `parsed_decimal`.//// The exact number represented by `parsed_decimal` must lie between the two// numbers://   A = `guess_mantissa * 2**guess_exponent`//   B = `(guess_mantissa + 1) * 2**guess_exponent`//// This function returns false if `A` is the better guess, and true if `B` is// the better guess, with rounding ties broken by rounding to even.bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,                 const strings_internal::ParsedFloat& parsed_decimal) {  // 768 is the number of digits needed in the worst case.  We could determine a  // better limit dynamically based on the value of parsed_decimal.exponent.  // This would optimize pathological input cases only.  (Sane inputs won't have  // hundreds of digits of mantissa.)  absl::strings_internal::BigUnsigned<84> exact_mantissa;  int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);  // Adjust the `guess` arguments to be halfway between A and B.  guess_mantissa = guess_mantissa * 2 + 1;  guess_exponent -= 1;  // In our comparison:  // lhs = exact = exact_mantissa * 10**exact_exponent  //             = exact_mantissa * 5**exact_exponent * 2**exact_exponent  // rhs = guess = guess_mantissa * 2**guess_exponent  //  // Because we are doing integer math, we can't directly deal with negative  // exponents.  We instead move these to the other side of the inequality.  absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;  int comparison;  if (exact_exponent >= 0) {    lhs.MultiplyByFiveToTheNth(exact_exponent);    absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);    // There are powers of 2 on both sides of the inequality; reduce this to    // a single bit-shift.    if (exact_exponent > guess_exponent) {      lhs.ShiftLeft(exact_exponent - guess_exponent);    } else {      rhs.ShiftLeft(guess_exponent - exact_exponent);    }    comparison = Compare(lhs, rhs);  } else {    // Move the power of 5 to the other side of the equation, giving us:    // lhs = exact_mantissa * 2**exact_exponent    // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent    absl::strings_internal::BigUnsigned<84> rhs =        absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);    rhs.MultiplyBy(guess_mantissa);    if (exact_exponent > guess_exponent) {      lhs.ShiftLeft(exact_exponent - guess_exponent);    } else {      rhs.ShiftLeft(guess_exponent - exact_exponent);    }    comparison = Compare(lhs, rhs);  }  if (comparison < 0) {    return false;  } else if (comparison > 0) {    return true;  } else {    // When lhs == rhs, the decimal input is exactly between A and B.    // Round towards even -- round up only if the low bit of the initial    // `guess_mantissa` was a 1.  We shifted guess_mantissa left 1 bit at    // the beginning of this function, so test the 2nd bit here.    return (guess_mantissa & 2) == 2;  }}// Constructs a CalculatedFloat from a given mantissa and exponent, but// with the following normalizations applied://// If rounding has caused mantissa to increase just past the allowed bit// width, shift and adjust exponent.//// If exponent is too high, sets kOverflow.//// If mantissa is zero (representing a non-zero value not representable, even// as a subnormal), sets kUnderflow.template <typename FloatType>CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {  CalculatedFloat result;  if (mantissa == uint64_t(1) << FloatTraits<FloatType>::kTargetMantissaBits) {    mantissa >>= 1;    exponent += 1;  }  if (exponent > FloatTraits<FloatType>::kMaxExponent) {    result.exponent = kOverflow;  } else if (mantissa == 0) {    result.exponent = kUnderflow;  } else {    result.exponent = exponent;    result.mantissa = mantissa;  }  return result;}template <typename FloatType>CalculatedFloat CalculateFromParsedHexadecimal(    const strings_internal::ParsedFloat& parsed_hex) {  uint64_t mantissa = parsed_hex.mantissa;  int exponent = parsed_hex.exponent;  int mantissa_width = 64 - base_internal::CountLeadingZeros64(mantissa);  const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);  bool result_exact;  exponent += shift;  mantissa = ShiftRightAndRound(mantissa, shift,                                /* input exact= */ true, &result_exact);  // ParseFloat handles rounding in the hexadecimal case, so we don't have to  // check `result_exact` here.  return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);}template <typename FloatType>CalculatedFloat CalculateFromParsedDecimal(    const strings_internal::ParsedFloat& parsed_decimal) {  CalculatedFloat result;  // Large or small enough decimal exponents will always result in overflow  // or underflow.  if (Power10Underflow(parsed_decimal.exponent)) {    result.exponent = kUnderflow;    return result;  } else if (Power10Overflow(parsed_decimal.exponent)) {    result.exponent = kOverflow;    return result;  }  // Otherwise convert our power of 10 into a power of 2 times an integer  // mantissa, and multiply this by our parsed decimal mantissa.  uint128 wide_binary_mantissa = parsed_decimal.mantissa;  wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);  int binary_exponent = Power10Exponent(parsed_decimal.exponent);  // Discard bits that are inaccurate due to truncation error.  The magic  // `mantissa_width` constants below are justified in  // https://abseil.io/about/design/charconv. They represent the number of bits  // in `wide_binary_mantissa` that are guaranteed to be unaffected by error  // propagation.  bool mantissa_exact;  int mantissa_width;  if (parsed_decimal.subrange_begin) {    // Truncated mantissa    mantissa_width = 58;    mantissa_exact = false;    binary_exponent +=        TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);  } else if (!Power10Exact(parsed_decimal.exponent)) {    // Exact mantissa, truncated power of ten    mantissa_width = 63;    mantissa_exact = false;    binary_exponent +=        TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);  } else {    // Product is exact    mantissa_width = BitWidth(wide_binary_mantissa);    mantissa_exact = true;  }  // Shift into an FloatType-sized mantissa, and round to nearest.  const int shift =      NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);  bool result_exact;  binary_exponent += shift;  uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,                                                mantissa_exact, &result_exact);  if (!result_exact) {    // We could not determine the rounding direction using int128 math.  Use    // full resolution math instead.    if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {      binary_mantissa += 1;    }  }  return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,                                                 binary_exponent);}template <typename FloatType>from_chars_result FromCharsImpl(const char* first, const char* last,                                FloatType& value, chars_format fmt_flags) {  from_chars_result result;  result.ptr = first;  // overwritten on successful parse  result.ec = std::errc();  bool negative = false;  if (first != last && *first == '-') {    ++first;    negative = true;  }  // If the `hex` flag is *not* set, then we will accept a 0x prefix and try  // to parse a hexadecimal float.  if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&      *first == '0' && (first[1] == 'x' || first[1] == 'X')) {    const char* hex_first = first + 2;    strings_internal::ParsedFloat hex_parse =        strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);    if (hex_parse.end == nullptr ||        hex_parse.type != strings_internal::FloatType::kNumber) {      // Either we failed to parse a hex float after the "0x", or we read      // "0xinf" or "0xnan" which we don't want to match.      //      // However, a std::string that begins with "0x" also begins with "0", which      // is normally a valid match for the number zero.  So we want these      // strings to match zero unless fmt_flags is `scientific`.  (This flag      // means an exponent is required, which the std::string "0" does not have.)      if (fmt_flags == chars_format::scientific) {        result.ec = std::errc::invalid_argument;      } else {        result.ptr = first + 1;        value = negative ? -0.0 : 0.0;      }      return result;    }    // We matched a value.    result.ptr = hex_parse.end;    if (HandleEdgeCase(hex_parse, negative, &value)) {      return result;    }    CalculatedFloat calculated =        CalculateFromParsedHexadecimal<FloatType>(hex_parse);    EncodeResult(calculated, negative, &result, &value);    return result;  }  // Otherwise, we choose the number base based on the flags.  if ((fmt_flags & chars_format::hex) == chars_format::hex) {    strings_internal::ParsedFloat hex_parse =        strings_internal::ParseFloat<16>(first, last, fmt_flags);    if (hex_parse.end == nullptr) {      result.ec = std::errc::invalid_argument;      return result;    }    result.ptr = hex_parse.end;    if (HandleEdgeCase(hex_parse, negative, &value)) {      return result;    }    CalculatedFloat calculated =        CalculateFromParsedHexadecimal<FloatType>(hex_parse);    EncodeResult(calculated, negative, &result, &value);    return result;  } else {    strings_internal::ParsedFloat decimal_parse =        strings_internal::ParseFloat<10>(first, last, fmt_flags);    if (decimal_parse.end == nullptr) {      result.ec = std::errc::invalid_argument;      return result;    }    result.ptr = decimal_parse.end;    if (HandleEdgeCase(decimal_parse, negative, &value)) {      return result;    }    CalculatedFloat calculated =        CalculateFromParsedDecimal<FloatType>(decimal_parse);    EncodeResult(calculated, negative, &result, &value);    return result;  }}}  // namespacefrom_chars_result from_chars(const char* first, const char* last, double& value,                             chars_format fmt) {  return FromCharsImpl(first, last, value, fmt);}from_chars_result from_chars(const char* first, const char* last, float& value,                             chars_format fmt) {  return FromCharsImpl(first, last, value, fmt);}namespace {// Table of powers of 10, from kPower10TableMin to kPower10TableMax.//// kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high// bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the// power-of-two exponent.  For a given number i, this gives the unique mantissa// and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) *// 2**exponent.const uint64_t kPower10MantissaTable[] = {    0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,    0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,    0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,    0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,    0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,    0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,    0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,    0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,    0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,    0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,    0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,    0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,    0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,    0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,    0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,    0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,    0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,    0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,    0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,    0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,    0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,    0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,    0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,    0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,    0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,    0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,    0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,    0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,    0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,    0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,    0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,    0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,    0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,    0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,    0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,    0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,    0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,    0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,    0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,    0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,    0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,    0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,    0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,    0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,    0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,    0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,    0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,    0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,    0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,    0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,    0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,    0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,    0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,    0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,    0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,    0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,    0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,    0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,    0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,    0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,    0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,    0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,    0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,    0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,    0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,    0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,    0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,    0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,    0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,    0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,    0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,    0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,    0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,    0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,    0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,    0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,    0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,    0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,    0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,    0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,    0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,    0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,    0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,    0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,    0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,    0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,    0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,    0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,    0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,    0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,    0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,    0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,    0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,    0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,    0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,    0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,    0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,    0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,    0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,    0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,    0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,    0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,    0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,    0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,    0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,    0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,    0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,    0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,    0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,    0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,    0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,    0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,    0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,    0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,    0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,    0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,    0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,    0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,    0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,    0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,    0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,    0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,    0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,    0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,    0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,    0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,    0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,    0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,    0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,    0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,    0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,    0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,    0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,    0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,    0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,    0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,    0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,    0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,    0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,    0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,    0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,    0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,    0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,    0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,    0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,    0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,    0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,    0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,    0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,    0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,    0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,    0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,    0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,    0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,    0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,    0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,    0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,    0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,    0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,    0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,    0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,    0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,    0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,    0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,    0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,    0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,    0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,    0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,    0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,    0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,    0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,    0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,    0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,    0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,    0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,    0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,    0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,    0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,    0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,    0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,    0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,    0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,    0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,    0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,    0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,    0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,    0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,    0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,    0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,    0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,    0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,    0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,    0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,    0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,    0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,    0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,    0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,    0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,    0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,    0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,    0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,    0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,    0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,    0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,    0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,    0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,    0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,    0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,    0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,    0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,    0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,    0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,    0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,    0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,    0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,    0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,    0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,};const int16_t kPower10ExponentTable[] = {    -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166,    -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130,    -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093,    -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057,    -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020,    -1017, -1014, -1010, -1007, -1004, -1000, -997,  -994,  -990,  -987,  -984,    -980,  -977,  -974,  -970,  -967,  -964,  -960,  -957,  -954,  -950,  -947,    -944,  -940,  -937,  -934,  -931,  -927,  -924,  -921,  -917,  -914,  -911,    -907,  -904,  -901,  -897,  -894,  -891,  -887,  -884,  -881,  -877,  -874,    -871,  -867,  -864,  -861,  -857,  -854,  -851,  -847,  -844,  -841,  -838,    -834,  -831,  -828,  -824,  -821,  -818,  -814,  -811,  -808,  -804,  -801,    -798,  -794,  -791,  -788,  -784,  -781,  -778,  -774,  -771,  -768,  -764,    -761,  -758,  -754,  -751,  -748,  -744,  -741,  -738,  -735,  -731,  -728,    -725,  -721,  -718,  -715,  -711,  -708,  -705,  -701,  -698,  -695,  -691,    -688,  -685,  -681,  -678,  -675,  -671,  -668,  -665,  -661,  -658,  -655,    -651,  -648,  -645,  -642,  -638,  -635,  -632,  -628,  -625,  -622,  -618,    -615,  -612,  -608,  -605,  -602,  -598,  -595,  -592,  -588,  -585,  -582,    -578,  -575,  -572,  -568,  -565,  -562,  -558,  -555,  -552,  -549,  -545,    -542,  -539,  -535,  -532,  -529,  -525,  -522,  -519,  -515,  -512,  -509,    -505,  -502,  -499,  -495,  -492,  -489,  -485,  -482,  -479,  -475,  -472,    -469,  -465,  -462,  -459,  -455,  -452,  -449,  -446,  -442,  -439,  -436,    -432,  -429,  -426,  -422,  -419,  -416,  -412,  -409,  -406,  -402,  -399,    -396,  -392,  -389,  -386,  -382,  -379,  -376,  -372,  -369,  -366,  -362,    -359,  -356,  -353,  -349,  -346,  -343,  -339,  -336,  -333,  -329,  -326,    -323,  -319,  -316,  -313,  -309,  -306,  -303,  -299,  -296,  -293,  -289,    -286,  -283,  -279,  -276,  -273,  -269,  -266,  -263,  -259,  -256,  -253,    -250,  -246,  -243,  -240,  -236,  -233,  -230,  -226,  -223,  -220,  -216,    -213,  -210,  -206,  -203,  -200,  -196,  -193,  -190,  -186,  -183,  -180,    -176,  -173,  -170,  -166,  -163,  -160,  -157,  -153,  -150,  -147,  -143,    -140,  -137,  -133,  -130,  -127,  -123,  -120,  -117,  -113,  -110,  -107,    -103,  -100,  -97,   -93,   -90,   -87,   -83,   -80,   -77,   -73,   -70,    -67,   -63,   -60,   -57,   -54,   -50,   -47,   -44,   -40,   -37,   -34,    -30,   -27,   -24,   -20,   -17,   -14,   -10,   -7,    -4,    0,     3,    6,     10,    13,    16,    20,    23,    26,    30,    33,    36,    39,    43,    46,    49,    53,    56,    59,    63,    66,    69,    73,    76,    79,    83,    86,    89,    93,    96,    99,    103,   106,   109,   113,    116,   119,   123,   126,   129,   132,   136,   139,   142,   146,   149,    152,   156,   159,   162,   166,   169,   172,   176,   179,   182,   186,    189,   192,   196,   199,   202,   206,   209,   212,   216,   219,   222,    226,   229,   232,   235,   239,   242,   245,   249,   252,   255,   259,    262,   265,   269,   272,   275,   279,   282,   285,   289,   292,   295,    299,   302,   305,   309,   312,   315,   319,   322,   325,   328,   332,    335,   338,   342,   345,   348,   352,   355,   358,   362,   365,   368,    372,   375,   378,   382,   385,   388,   392,   395,   398,   402,   405,    408,   412,   415,   418,   422,   425,   428,   431,   435,   438,   441,    445,   448,   451,   455,   458,   461,   465,   468,   471,   475,   478,    481,   485,   488,   491,   495,   498,   501,   505,   508,   511,   515,    518,   521,   524,   528,   531,   534,   538,   541,   544,   548,   551,    554,   558,   561,   564,   568,   571,   574,   578,   581,   584,   588,    591,   594,   598,   601,   604,   608,   611,   614,   617,   621,   624,    627,   631,   634,   637,   641,   644,   647,   651,   654,   657,   661,    664,   667,   671,   674,   677,   681,   684,   687,   691,   694,   697,    701,   704,   707,   711,   714,   717,   720,   724,   727,   730,   734,    737,   740,   744,   747,   750,   754,   757,   760,   764,   767,   770,    774,   777,   780,   784,   787,   790,   794,   797,   800,   804,   807,    810,   813,   817,   820,   823,   827,   830,   833,   837,   840,   843,    847,   850,   853,   857,   860,   863,   867,   870,   873,   877,   880,    883,   887,   890,   893,   897,   900,   903,   907,   910,   913,   916,    920,   923,   926,   930,   933,   936,   940,   943,   946,   950,   953,    956,   960,};}  // namespaceABSL_NAMESPACE_END}  // namespace absl
 |