| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: node_hash_map.h// -----------------------------------------------------------------------------//// An `absl::node_hash_map<K, V>` is an unordered associative container of// unique keys and associated values designed to be a more efficient replacement// for `std::unordered_map`. Like `unordered_map`, search, insertion, and// deletion of map elements can be done as an `O(1)` operation. However,// `node_hash_map` (and other unordered associative containers known as the// collection of Abseil "Swiss tables") contain other optimizations that result// in both memory and computation advantages.//// In most cases, your default choice for a hash map should be a map of type// `flat_hash_map`. However, if you need pointer stability and cannot store// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a// valid alternative. As well, if you are migrating your code from using// `std::unordered_map`, a `node_hash_map` provides a more straightforward// migration, because it guarantees pointer stability. Consider migrating to// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`// upon further review.#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_#define ABSL_CONTAINER_NODE_HASH_MAP_H_#include <tuple>#include <type_traits>#include <utility>#include "absl/algorithm/container.h"#include "absl/container/internal/container_memory.h"#include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export#include "absl/container/internal/node_hash_policy.h"#include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export#include "absl/memory/memory.h"namespace absl {ABSL_NAMESPACE_BEGINnamespace container_internal {template <class Key, class Value>class NodeHashMapPolicy;}  // namespace container_internal// -----------------------------------------------------------------------------// absl::node_hash_map// -----------------------------------------------------------------------------//// An `absl::node_hash_map<K, V>` is an unordered associative container which// has been optimized for both speed and memory footprint in most common use// cases. Its interface is similar to that of `std::unordered_map<K, V>` with// the following notable differences://// * Supports heterogeneous lookup, through `find()`, `operator[]()` and//   `insert()`, provided that the map is provided a compatible heterogeneous//   hashing function and equality operator.// * Contains a `capacity()` member function indicating the number of element//   slots (open, deleted, and empty) within the hash map.// * Returns `void` from the `erase(iterator)` overload.//// By default, `node_hash_map` uses the `absl::Hash` hashing framework.// All fundamental and Abseil types that support the `absl::Hash` framework have// a compatible equality operator for comparing insertions into `node_hash_map`.// If your type is not yet supported by the `absl::Hash` framework, see// absl/hash/hash.h for information on extending Abseil hashing to user-defined// types.//// Example:////   // Create a node hash map of three strings (that map to strings)//   absl::node_hash_map<std::string, std::string> ducks =//     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};////  // Insert a new element into the node hash map//  ducks.insert({"d", "donald"}};////  // Force a rehash of the node hash map//  ducks.rehash(0);////  // Find the element with the key "b"//  std::string search_key = "b";//  auto result = ducks.find(search_key);//  if (result != ducks.end()) {//    std::cout << "Result: " << result->second << std::endl;//  }template <class Key, class Value,          class Hash = absl::container_internal::hash_default_hash<Key>,          class Eq = absl::container_internal::hash_default_eq<Key>,          class Alloc = std::allocator<std::pair<const Key, Value>>>class node_hash_map    : public absl::container_internal::raw_hash_map<          absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,          Alloc> {  using Base = typename node_hash_map::raw_hash_map; public:  // Constructors and Assignment Operators  //  // A node_hash_map supports the same overload set as `std::unordered_map`  // for construction and assignment:  //  // *  Default constructor  //  //    // No allocation for the table's elements is made.  //    absl::node_hash_map<int, std::string> map1;  //  // * Initializer List constructor  //  //   absl::node_hash_map<int, std::string> map2 =  //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};  //  // * Copy constructor  //  //   absl::node_hash_map<int, std::string> map3(map2);  //  // * Copy assignment operator  //  //  // Hash functor and Comparator are copied as well  //  absl::node_hash_map<int, std::string> map4;  //  map4 = map3;  //  // * Move constructor  //  //   // Move is guaranteed efficient  //   absl::node_hash_map<int, std::string> map5(std::move(map4));  //  // * Move assignment operator  //  //   // May be efficient if allocators are compatible  //   absl::node_hash_map<int, std::string> map6;  //   map6 = std::move(map5);  //  // * Range constructor  //  //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};  //   absl::node_hash_map<int, std::string> map7(v.begin(), v.end());  node_hash_map() {}  using Base::Base;  // node_hash_map::begin()  //  // Returns an iterator to the beginning of the `node_hash_map`.  using Base::begin;  // node_hash_map::cbegin()  //  // Returns a const iterator to the beginning of the `node_hash_map`.  using Base::cbegin;  // node_hash_map::cend()  //  // Returns a const iterator to the end of the `node_hash_map`.  using Base::cend;  // node_hash_map::end()  //  // Returns an iterator to the end of the `node_hash_map`.  using Base::end;  // node_hash_map::capacity()  //  // Returns the number of element slots (assigned, deleted, and empty)  // available within the `node_hash_map`.  //  // NOTE: this member function is particular to `absl::node_hash_map` and is  // not provided in the `std::unordered_map` API.  using Base::capacity;  // node_hash_map::empty()  //  // Returns whether or not the `node_hash_map` is empty.  using Base::empty;  // node_hash_map::max_size()  //  // Returns the largest theoretical possible number of elements within a  // `node_hash_map` under current memory constraints. This value can be thought  // of as the largest value of `std::distance(begin(), end())` for a  // `node_hash_map<K, V>`.  using Base::max_size;  // node_hash_map::size()  //  // Returns the number of elements currently within the `node_hash_map`.  using Base::size;  // node_hash_map::clear()  //  // Removes all elements from the `node_hash_map`. Invalidates any references,  // pointers, or iterators referring to contained elements.  //  // NOTE: this operation may shrink the underlying buffer. To avoid shrinking  // the underlying buffer call `erase(begin(), end())`.  using Base::clear;  // node_hash_map::erase()  //  // Erases elements within the `node_hash_map`. Erasing does not trigger a  // rehash. Overloads are listed below.  //  // void erase(const_iterator pos):  //  //   Erases the element at `position` of the `node_hash_map`, returning  //   `void`.  //  //   NOTE: this return behavior is different than that of STL containers in  //   general and `std::unordered_map` in particular.  //  // iterator erase(const_iterator first, const_iterator last):  //  //   Erases the elements in the open interval [`first`, `last`), returning an  //   iterator pointing to `last`.  //  // size_type erase(const key_type& key):  //  //   Erases the element with the matching key, if it exists.  using Base::erase;  // node_hash_map::insert()  //  // Inserts an element of the specified value into the `node_hash_map`,  // returning an iterator pointing to the newly inserted element, provided that  // an element with the given key does not already exist. If rehashing occurs  // due to the insertion, all iterators are invalidated. Overloads are listed  // below.  //  // std::pair<iterator,bool> insert(const init_type& value):  //  //   Inserts a value into the `node_hash_map`. Returns a pair consisting of an  //   iterator to the inserted element (or to the element that prevented the  //   insertion) and a `bool` denoting whether the insertion took place.  //  // std::pair<iterator,bool> insert(T&& value):  // std::pair<iterator,bool> insert(init_type&& value):  //  //   Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`  //   consisting of an iterator to the inserted element (or to the element that  //   prevented the insertion) and a `bool` denoting whether the insertion took  //   place.  //  // iterator insert(const_iterator hint, const init_type& value):  // iterator insert(const_iterator hint, T&& value):  // iterator insert(const_iterator hint, init_type&& value);  //  //   Inserts a value, using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search. Returns an iterator to the  //   inserted element, or to the existing element that prevented the  //   insertion.  //  // void insert(InputIterator first, InputIterator last):  //  //   Inserts a range of values [`first`, `last`).  //  //   NOTE: Although the STL does not specify which element may be inserted if  //   multiple keys compare equivalently, for `node_hash_map` we guarantee the  //   first match is inserted.  //  // void insert(std::initializer_list<init_type> ilist):  //  //   Inserts the elements within the initializer list `ilist`.  //  //   NOTE: Although the STL does not specify which element may be inserted if  //   multiple keys compare equivalently within the initializer list, for  //   `node_hash_map` we guarantee the first match is inserted.  using Base::insert;  // node_hash_map::insert_or_assign()  //  // Inserts an element of the specified value into the `node_hash_map` provided  // that a value with the given key does not already exist, or replaces it with  // the element value if a key for that value already exists, returning an  // iterator pointing to the newly inserted element. If rehashing occurs due to  // the insertion, all iterators are invalidated. Overloads are listed  // below.  //  // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):  // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):  //  //   Inserts/Assigns (or moves) the element of the specified key into the  //   `node_hash_map`.  //  // iterator insert_or_assign(const_iterator hint,  //                           const init_type& k, T&& obj):  // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):  //  //   Inserts/Assigns (or moves) the element of the specified key into the  //   `node_hash_map` using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search.  using Base::insert_or_assign;  // node_hash_map::emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `node_hash_map`, provided that no element with the given key  // already exists.  //  // The element may be constructed even if there already is an element with the  // key in the container, in which case the newly constructed element will be  // destroyed immediately. Prefer `try_emplace()` unless your key is not  // copyable or moveable.  //  // If rehashing occurs due to the insertion, all iterators are invalidated.  using Base::emplace;  // node_hash_map::emplace_hint()  //  // Inserts an element of the specified value by constructing it in-place  // within the `node_hash_map`, using the position of `hint` as a non-binding  // suggestion for where to begin the insertion search, and only inserts  // provided that no element with the given key already exists.  //  // The element may be constructed even if there already is an element with the  // key in the container, in which case the newly constructed element will be  // destroyed immediately. Prefer `try_emplace()` unless your key is not  // copyable or moveable.  //  // If rehashing occurs due to the insertion, all iterators are invalidated.  using Base::emplace_hint;  // node_hash_map::try_emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `node_hash_map`, provided that no element with the given key  // already exists. Unlike `emplace()`, if an element with the given key  // already exists, we guarantee that no element is constructed.  //  // If rehashing occurs due to the insertion, all iterators are invalidated.  // Overloads are listed below.  //  //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):  //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):  //  // Inserts (via copy or move) the element of the specified key into the  // `node_hash_map`.  //  //   iterator try_emplace(const_iterator hint,  //                        const init_type& k, Args&&... args):  //   iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):  //  // Inserts (via copy or move) the element of the specified key into the  // `node_hash_map` using the position of `hint` as a non-binding suggestion  // for where to begin the insertion search.  //  // All `try_emplace()` overloads make the same guarantees regarding rvalue  // arguments as `std::unordered_map::try_emplace()`, namely that these  // functions will not move from rvalue arguments if insertions do not happen.  using Base::try_emplace;  // node_hash_map::extract()  //  // Extracts the indicated element, erasing it in the process, and returns it  // as a C++17-compatible node handle. Overloads are listed below.  //  // node_type extract(const_iterator position):  //  //   Extracts the key,value pair of the element at the indicated position and  //   returns a node handle owning that extracted data.  //  // node_type extract(const key_type& x):  //  //   Extracts the key,value pair of the element with a key matching the passed  //   key value and returns a node handle owning that extracted data. If the  //   `node_hash_map` does not contain an element with a matching key, this  //   function returns an empty node handle.  using Base::extract;  // node_hash_map::merge()  //  // Extracts elements from a given `source` node hash map into this  // `node_hash_map`. If the destination `node_hash_map` already contains an  // element with an equivalent key, that element is not extracted.  using Base::merge;  // node_hash_map::swap(node_hash_map& other)  //  // Exchanges the contents of this `node_hash_map` with those of the `other`  // node hash map, avoiding invocation of any move, copy, or swap operations on  // individual elements.  //  // All iterators and references on the `node_hash_map` remain valid, excepting  // for the past-the-end iterator, which is invalidated.  //  // `swap()` requires that the node hash map's hashing and key equivalence  // functions be Swappable, and are exchaged using unqualified calls to  // non-member `swap()`. If the map's allocator has  // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`  // set to `true`, the allocators are also exchanged using an unqualified call  // to non-member `swap()`; otherwise, the allocators are not swapped.  using Base::swap;  // node_hash_map::rehash(count)  //  // Rehashes the `node_hash_map`, setting the number of slots to be at least  // the passed value. If the new number of slots increases the load factor more  // than the current maximum load factor  // (`count` < `size()` / `max_load_factor()`), then the new number of slots  // will be at least `size()` / `max_load_factor()`.  //  // To force a rehash, pass rehash(0).  using Base::rehash;  // node_hash_map::reserve(count)  //  // Sets the number of slots in the `node_hash_map` to the number needed to  // accommodate at least `count` total elements without exceeding the current  // maximum load factor, and may rehash the container if needed.  using Base::reserve;  // node_hash_map::at()  //  // Returns a reference to the mapped value of the element with key equivalent  // to the passed key.  using Base::at;  // node_hash_map::contains()  //  // Determines whether an element with a key comparing equal to the given `key`  // exists within the `node_hash_map`, returning `true` if so or `false`  // otherwise.  using Base::contains;  // node_hash_map::count(const Key& key) const  //  // Returns the number of elements with a key comparing equal to the given  // `key` within the `node_hash_map`. note that this function will return  // either `1` or `0` since duplicate keys are not allowed within a  // `node_hash_map`.  using Base::count;  // node_hash_map::equal_range()  //  // Returns a closed range [first, last], defined by a `std::pair` of two  // iterators, containing all elements with the passed key in the  // `node_hash_map`.  using Base::equal_range;  // node_hash_map::find()  //  // Finds an element with the passed `key` within the `node_hash_map`.  using Base::find;  // node_hash_map::operator[]()  //  // Returns a reference to the value mapped to the passed key within the  // `node_hash_map`, performing an `insert()` if the key does not already  // exist. If an insertion occurs and results in a rehashing of the container,  // all iterators are invalidated. Otherwise iterators are not affected and  // references are not invalidated. Overloads are listed below.  //  // T& operator[](const Key& key):  //  //   Inserts an init_type object constructed in-place if the element with the  //   given key does not exist.  //  // T& operator[](Key&& key):  //  //   Inserts an init_type object constructed in-place provided that an element  //   with the given key does not exist.  using Base::operator[];  // node_hash_map::bucket_count()  //  // Returns the number of "buckets" within the `node_hash_map`.  using Base::bucket_count;  // node_hash_map::load_factor()  //  // Returns the current load factor of the `node_hash_map` (the average number  // of slots occupied with a value within the hash map).  using Base::load_factor;  // node_hash_map::max_load_factor()  //  // Manages the maximum load factor of the `node_hash_map`. Overloads are  // listed below.  //  // float node_hash_map::max_load_factor()  //  //   Returns the current maximum load factor of the `node_hash_map`.  //  // void node_hash_map::max_load_factor(float ml)  //  //   Sets the maximum load factor of the `node_hash_map` to the passed value.  //  //   NOTE: This overload is provided only for API compatibility with the STL;  //   `node_hash_map` will ignore any set load factor and manage its rehashing  //   internally as an implementation detail.  using Base::max_load_factor;  // node_hash_map::get_allocator()  //  // Returns the allocator function associated with this `node_hash_map`.  using Base::get_allocator;  // node_hash_map::hash_function()  //  // Returns the hashing function used to hash the keys within this  // `node_hash_map`.  using Base::hash_function;  // node_hash_map::key_eq()  //  // Returns the function used for comparing keys equality.  using Base::key_eq;  ABSL_DEPRECATED("Call `hash_function()` instead.")  typename Base::hasher hash_funct() { return this->hash_function(); }  ABSL_DEPRECATED("Call `rehash()` instead.")  void resize(typename Base::size_type hint) { this->rehash(hint); }};// erase_if(node_hash_map<>, Pred)//// Erases all elements that satisfy the predicate `pred` from the container `c`.template <typename K, typename V, typename H, typename E, typename A,          typename Predicate>void erase_if(node_hash_map<K, V, H, E, A>& c, Predicate pred) {  container_internal::EraseIf(pred, &c);}namespace container_internal {template <class Key, class Value>class NodeHashMapPolicy    : public absl::container_internal::node_hash_policy<          std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {  using value_type = std::pair<const Key, Value>; public:  using key_type = Key;  using mapped_type = Value;  using init_type = std::pair</*non const*/ key_type, mapped_type>;  template <class Allocator, class... Args>  static value_type* new_element(Allocator* alloc, Args&&... args) {    using PairAlloc = typename absl::allocator_traits<        Allocator>::template rebind_alloc<value_type>;    PairAlloc pair_alloc(*alloc);    value_type* res =        absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);    absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,                                                 std::forward<Args>(args)...);    return res;  }  template <class Allocator>  static void delete_element(Allocator* alloc, value_type* pair) {    using PairAlloc = typename absl::allocator_traits<        Allocator>::template rebind_alloc<value_type>;    PairAlloc pair_alloc(*alloc);    absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);    absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);  }  template <class F, class... Args>  static decltype(absl::container_internal::DecomposePair(      std::declval<F>(), std::declval<Args>()...))  apply(F&& f, Args&&... args) {    return absl::container_internal::DecomposePair(std::forward<F>(f),                                                   std::forward<Args>(args)...);  }  static size_t element_space_used(const value_type*) {    return sizeof(value_type);  }  static Value& value(value_type* elem) { return elem->second; }  static const Value& value(const value_type* elem) { return elem->second; }};}  // namespace container_internalnamespace container_algorithm_internal {// Specialization of trait in absl/algorithm/container.htemplate <class Key, class T, class Hash, class KeyEqual, class Allocator>struct IsUnorderedContainer<    absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};}  // namespace container_algorithm_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_CONTAINER_NODE_HASH_MAP_H_
 |