| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: btree_set.h// -----------------------------------------------------------------------------//// This header file defines B-tree sets: sorted associative containers of// values.////     * `absl::btree_set<>`//     * `absl::btree_multiset<>`//// These B-tree types are similar to the corresponding types in the STL// (`std::set` and `std::multiset`) and generally conform to the STL interfaces// of those types. However, because they are implemented using B-trees, they// are more efficient in most situations.//// Unlike `std::set` and `std::multiset`, which are commonly implemented using// red-black tree nodes, B-tree sets use more generic B-tree nodes able to hold// multiple values per node. Holding multiple values per node often makes// B-tree sets perform better than their `std::set` counterparts, because// multiple entries can be checked within the same cache hit.//// However, these types should not be considered drop-in replacements for// `std::set` and `std::multiset` as there are some API differences, which are// noted in this header file.//// Importantly, insertions and deletions may invalidate outstanding iterators,// pointers, and references to elements. Such invalidations are typically only// an issue if insertion and deletion operations are interleaved with the use of// more than one iterator, pointer, or reference simultaneously. For this// reason, `insert()` and `erase()` return a valid iterator at the current// position.#ifndef ABSL_CONTAINER_BTREE_SET_H_#define ABSL_CONTAINER_BTREE_SET_H_#include "absl/container/internal/btree.h"  // IWYU pragma: export#include "absl/container/internal/btree_container.h"  // IWYU pragma: exportnamespace absl {ABSL_NAMESPACE_BEGIN// absl::btree_set<>//// An `absl::btree_set<K>` is an ordered associative container of unique key// values designed to be a more efficient replacement for `std::set` (in most// cases).//// Keys are sorted using an (optional) comparison function, which defaults to// `std::less<K>`.//// An `absl::btree_set<K>` uses a default allocator of `std::allocator<K>` to// allocate (and deallocate) nodes, and construct and destruct values within// those nodes. You may instead specify a custom allocator `A` (which in turn// requires specifying a custom comparator `C`) as in// `absl::btree_set<K, C, A>`.//template <typename Key, typename Compare = std::less<Key>,          typename Alloc = std::allocator<Key>>class btree_set    : public container_internal::btree_set_container<          container_internal::btree<container_internal::set_params<              Key, Compare, Alloc, /*TargetNodeSize=*/256,              /*Multi=*/false>>> {  using Base = typename btree_set::btree_set_container; public:  // Constructors and Assignment Operators  //  // A `btree_set` supports the same overload set as `std::set`  // for construction and assignment:  //  // * Default constructor  //  //   absl::btree_set<std::string> set1;  //  // * Initializer List constructor  //  //   absl::btree_set<std::string> set2 =  //       {{"huey"}, {"dewey"}, {"louie"},};  //  // * Copy constructor  //  //   absl::btree_set<std::string> set3(set2);  //  // * Copy assignment operator  //  //  absl::btree_set<std::string> set4;  //  set4 = set3;  //  // * Move constructor  //  //   // Move is guaranteed efficient  //   absl::btree_set<std::string> set5(std::move(set4));  //  // * Move assignment operator  //  //   // May be efficient if allocators are compatible  //   absl::btree_set<std::string> set6;  //   set6 = std::move(set5);  //  // * Range constructor  //  //   std::vector<std::string> v = {"a", "b"};  //   absl::btree_set<std::string> set7(v.begin(), v.end());  btree_set() {}  using Base::Base;  // btree_set::begin()  //  // Returns an iterator to the beginning of the `btree_set`.  using Base::begin;  // btree_set::cbegin()  //  // Returns a const iterator to the beginning of the `btree_set`.  using Base::cbegin;  // btree_set::end()  //  // Returns an iterator to the end of the `btree_set`.  using Base::end;  // btree_set::cend()  //  // Returns a const iterator to the end of the `btree_set`.  using Base::cend;  // btree_set::empty()  //  // Returns whether or not the `btree_set` is empty.  using Base::empty;  // btree_set::max_size()  //  // Returns the largest theoretical possible number of elements within a  // `btree_set` under current memory constraints. This value can be thought  // of as the largest value of `std::distance(begin(), end())` for a  // `btree_set<Key>`.  using Base::max_size;  // btree_set::size()  //  // Returns the number of elements currently within the `btree_set`.  using Base::size;  // btree_set::clear()  //  // Removes all elements from the `btree_set`. Invalidates any references,  // pointers, or iterators referring to contained elements.  using Base::clear;  // btree_set::erase()  //  // Erases elements within the `btree_set`. Overloads are listed below.  //  // iterator erase(iterator position):  // iterator erase(const_iterator position):  //  //   Erases the element at `position` of the `btree_set`, returning  //   the iterator pointing to the element after the one that was erased  //   (or end() if none exists).  //  // iterator erase(const_iterator first, const_iterator last):  //  //   Erases the elements in the open interval [`first`, `last`), returning  //   the iterator pointing to the element after the interval that was erased  //   (or end() if none exists).  //  // template <typename K> size_type erase(const K& key):  //  //   Erases the element with the matching key, if it exists, returning the  //   number of elements erased.  using Base::erase;  // btree_set::insert()  //  // Inserts an element of the specified value into the `btree_set`,  // returning an iterator pointing to the newly inserted element, provided that  // an element with the given key does not already exist. If an insertion  // occurs, any references, pointers, or iterators are invalidated.  // Overloads are listed below.  //  // std::pair<iterator,bool> insert(const value_type& value):  //  //   Inserts a value into the `btree_set`. Returns a pair consisting of an  //   iterator to the inserted element (or to the element that prevented the  //   insertion) and a bool denoting whether the insertion took place.  //  // std::pair<iterator,bool> insert(value_type&& value):  //  //   Inserts a moveable value into the `btree_set`. Returns a pair  //   consisting of an iterator to the inserted element (or to the element that  //   prevented the insertion) and a bool denoting whether the insertion took  //   place.  //  // iterator insert(const_iterator hint, const value_type& value):  // iterator insert(const_iterator hint, value_type&& value):  //  //   Inserts a value, using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search. Returns an iterator to the  //   inserted element, or to the existing element that prevented the  //   insertion.  //  // void insert(InputIterator first, InputIterator last):  //  //   Inserts a range of values [`first`, `last`).  //  // void insert(std::initializer_list<init_type> ilist):  //  //   Inserts the elements within the initializer list `ilist`.  using Base::insert;  // btree_set::emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_set`, provided that no element with the given key  // already exists.  //  // The element may be constructed even if there already is an element with the  // key in the container, in which case the newly constructed element will be  // destroyed immediately.  //  // If an insertion occurs, any references, pointers, or iterators are  // invalidated.  using Base::emplace;  // btree_set::emplace_hint()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_set`, using the position of `hint` as a non-binding  // suggestion for where to begin the insertion search, and only inserts  // provided that no element with the given key already exists.  //  // The element may be constructed even if there already is an element with the  // key in the container, in which case the newly constructed element will be  // destroyed immediately.  //  // If an insertion occurs, any references, pointers, or iterators are  // invalidated.  using Base::emplace_hint;  // btree_set::extract()  //  // Extracts the indicated element, erasing it in the process, and returns it  // as a C++17-compatible node handle. Overloads are listed below.  //  // node_type extract(const_iterator position):  //  //   Extracts the element at the indicated position and returns a node handle  //   owning that extracted data.  //  // template <typename K> node_type extract(const K& x):  //  //   Extracts the element with the key matching the passed key value and  //   returns a node handle owning that extracted data. If the `btree_set`  //   does not contain an element with a matching key, this function returns an  //   empty node handle.  //  // NOTE: In this context, `node_type` refers to the C++17 concept of a  // move-only type that owns and provides access to the elements in associative  // containers (https://en.cppreference.com/w/cpp/container/node_handle).  // It does NOT refer to the data layout of the underlying btree.  using Base::extract;  // btree_set::merge()  //  // Extracts elements from a given `source` btree_set into this  // `btree_set`. If the destination `btree_set` already contains an  // element with an equivalent key, that element is not extracted.  using Base::merge;  // btree_set::swap(btree_set& other)  //  // Exchanges the contents of this `btree_set` with those of the `other`  // btree_set, avoiding invocation of any move, copy, or swap operations on  // individual elements.  //  // All iterators and references on the `btree_set` remain valid, excepting  // for the past-the-end iterator, which is invalidated.  using Base::swap;  // btree_set::contains()  //  // template <typename K> bool contains(const K& key) const:  //  // Determines whether an element comparing equal to the given `key` exists  // within the `btree_set`, returning `true` if so or `false` otherwise.  //  // Supports heterogeneous lookup, provided that the set is provided a  // compatible heterogeneous comparator.  using Base::contains;  // btree_set::count()  //  // template <typename K> size_type count(const K& key) const:  //  // Returns the number of elements comparing equal to the given `key` within  // the `btree_set`. Note that this function will return either `1` or `0`  // since duplicate elements are not allowed within a `btree_set`.  //  // Supports heterogeneous lookup, provided that the set is provided a  // compatible heterogeneous comparator.  using Base::count;  // btree_set::equal_range()  //  // Returns a closed range [first, last], defined by a `std::pair` of two  // iterators, containing all elements with the passed key in the  // `btree_set`.  using Base::equal_range;  // btree_set::find()  //  // template <typename K> iterator find(const K& key):  // template <typename K> const_iterator find(const K& key) const:  //  // Finds an element with the passed `key` within the `btree_set`.  //  // Supports heterogeneous lookup, provided that the set is provided a  // compatible heterogeneous comparator.  using Base::find;  // btree_set::get_allocator()  //  // Returns the allocator function associated with this `btree_set`.  using Base::get_allocator;  // btree_set::key_comp();  //  // Returns the key comparator associated with this `btree_set`.  using Base::key_comp;  // btree_set::value_comp();  //  // Returns the value comparator associated with this `btree_set`. The keys to  // sort the elements are the values themselves, therefore `value_comp` and its  // sibling member function `key_comp` are equivalent.  using Base::value_comp;};// absl::swap(absl::btree_set<>, absl::btree_set<>)//// Swaps the contents of two `absl::btree_set` containers.template <typename K, typename C, typename A>void swap(btree_set<K, C, A> &x, btree_set<K, C, A> &y) {  return x.swap(y);}// absl::erase_if(absl::btree_set<>, Pred)//// Erases all elements that satisfy the predicate pred from the container.template <typename K, typename C, typename A, typename Pred>void erase_if(btree_set<K, C, A> &set, Pred pred) {  for (auto it = set.begin(); it != set.end();) {    if (pred(*it)) {      it = set.erase(it);    } else {      ++it;    }  }}// absl::btree_multiset<>//// An `absl::btree_multiset<K>` is an ordered associative container of// keys and associated values designed to be a more efficient replacement// for `std::multiset` (in most cases). Unlike `absl::btree_set`, a B-tree// multiset allows equivalent elements.//// Keys are sorted using an (optional) comparison function, which defaults to// `std::less<K>`.//// An `absl::btree_multiset<K>` uses a default allocator of `std::allocator<K>`// to allocate (and deallocate) nodes, and construct and destruct values within// those nodes. You may instead specify a custom allocator `A` (which in turn// requires specifying a custom comparator `C`) as in// `absl::btree_multiset<K, C, A>`.//template <typename Key, typename Compare = std::less<Key>,          typename Alloc = std::allocator<Key>>class btree_multiset    : public container_internal::btree_multiset_container<          container_internal::btree<container_internal::set_params<              Key, Compare, Alloc, /*TargetNodeSize=*/256,              /*Multi=*/true>>> {  using Base = typename btree_multiset::btree_multiset_container; public:  // Constructors and Assignment Operators  //  // A `btree_multiset` supports the same overload set as `std::set`  // for construction and assignment:  //  // * Default constructor  //  //   absl::btree_multiset<std::string> set1;  //  // * Initializer List constructor  //  //   absl::btree_multiset<std::string> set2 =  //       {{"huey"}, {"dewey"}, {"louie"},};  //  // * Copy constructor  //  //   absl::btree_multiset<std::string> set3(set2);  //  // * Copy assignment operator  //  //  absl::btree_multiset<std::string> set4;  //  set4 = set3;  //  // * Move constructor  //  //   // Move is guaranteed efficient  //   absl::btree_multiset<std::string> set5(std::move(set4));  //  // * Move assignment operator  //  //   // May be efficient if allocators are compatible  //   absl::btree_multiset<std::string> set6;  //   set6 = std::move(set5);  //  // * Range constructor  //  //   std::vector<std::string> v = {"a", "b"};  //   absl::btree_multiset<std::string> set7(v.begin(), v.end());  btree_multiset() {}  using Base::Base;  // btree_multiset::begin()  //  // Returns an iterator to the beginning of the `btree_multiset`.  using Base::begin;  // btree_multiset::cbegin()  //  // Returns a const iterator to the beginning of the `btree_multiset`.  using Base::cbegin;  // btree_multiset::end()  //  // Returns an iterator to the end of the `btree_multiset`.  using Base::end;  // btree_multiset::cend()  //  // Returns a const iterator to the end of the `btree_multiset`.  using Base::cend;  // btree_multiset::empty()  //  // Returns whether or not the `btree_multiset` is empty.  using Base::empty;  // btree_multiset::max_size()  //  // Returns the largest theoretical possible number of elements within a  // `btree_multiset` under current memory constraints. This value can be  // thought of as the largest value of `std::distance(begin(), end())` for a  // `btree_multiset<Key>`.  using Base::max_size;  // btree_multiset::size()  //  // Returns the number of elements currently within the `btree_multiset`.  using Base::size;  // btree_multiset::clear()  //  // Removes all elements from the `btree_multiset`. Invalidates any references,  // pointers, or iterators referring to contained elements.  using Base::clear;  // btree_multiset::erase()  //  // Erases elements within the `btree_multiset`. Overloads are listed below.  //  // iterator erase(iterator position):  // iterator erase(const_iterator position):  //  //   Erases the element at `position` of the `btree_multiset`, returning  //   the iterator pointing to the element after the one that was erased  //   (or end() if none exists).  //  // iterator erase(const_iterator first, const_iterator last):  //  //   Erases the elements in the open interval [`first`, `last`), returning  //   the iterator pointing to the element after the interval that was erased  //   (or end() if none exists).  //  // template <typename K> size_type erase(const K& key):  //  //   Erases the elements matching the key, if any exist, returning the  //   number of elements erased.  using Base::erase;  // btree_multiset::insert()  //  // Inserts an element of the specified value into the `btree_multiset`,  // returning an iterator pointing to the newly inserted element.  // Any references, pointers, or iterators are invalidated.  Overloads are  // listed below.  //  // iterator insert(const value_type& value):  //  //   Inserts a value into the `btree_multiset`, returning an iterator to the  //   inserted element.  //  // iterator insert(value_type&& value):  //  //   Inserts a moveable value into the `btree_multiset`, returning an iterator  //   to the inserted element.  //  // iterator insert(const_iterator hint, const value_type& value):  // iterator insert(const_iterator hint, value_type&& value):  //  //   Inserts a value, using the position of `hint` as a non-binding suggestion  //   for where to begin the insertion search. Returns an iterator to the  //   inserted element.  //  // void insert(InputIterator first, InputIterator last):  //  //   Inserts a range of values [`first`, `last`).  //  // void insert(std::initializer_list<init_type> ilist):  //  //   Inserts the elements within the initializer list `ilist`.  using Base::insert;  // btree_multiset::emplace()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_multiset`. Any references, pointers, or iterators are  // invalidated.  using Base::emplace;  // btree_multiset::emplace_hint()  //  // Inserts an element of the specified value by constructing it in-place  // within the `btree_multiset`, using the position of `hint` as a non-binding  // suggestion for where to begin the insertion search.  //  // Any references, pointers, or iterators are invalidated.  using Base::emplace_hint;  // btree_multiset::extract()  //  // Extracts the indicated element, erasing it in the process, and returns it  // as a C++17-compatible node handle. Overloads are listed below.  //  // node_type extract(const_iterator position):  //  //   Extracts the element at the indicated position and returns a node handle  //   owning that extracted data.  //  // template <typename K> node_type extract(const K& x):  //  //   Extracts the element with the key matching the passed key value and  //   returns a node handle owning that extracted data. If the `btree_multiset`  //   does not contain an element with a matching key, this function returns an  //   empty node handle.  //  // NOTE: In this context, `node_type` refers to the C++17 concept of a  // move-only type that owns and provides access to the elements in associative  // containers (https://en.cppreference.com/w/cpp/container/node_handle).  // It does NOT refer to the data layout of the underlying btree.  using Base::extract;  // btree_multiset::merge()  //  // Extracts elements from a given `source` btree_multiset into this  // `btree_multiset`. If the destination `btree_multiset` already contains an  // element with an equivalent key, that element is not extracted.  using Base::merge;  // btree_multiset::swap(btree_multiset& other)  //  // Exchanges the contents of this `btree_multiset` with those of the `other`  // btree_multiset, avoiding invocation of any move, copy, or swap operations  // on individual elements.  //  // All iterators and references on the `btree_multiset` remain valid,  // excepting for the past-the-end iterator, which is invalidated.  using Base::swap;  // btree_multiset::contains()  //  // template <typename K> bool contains(const K& key) const:  //  // Determines whether an element comparing equal to the given `key` exists  // within the `btree_multiset`, returning `true` if so or `false` otherwise.  //  // Supports heterogeneous lookup, provided that the set is provided a  // compatible heterogeneous comparator.  using Base::contains;  // btree_multiset::count()  //  // template <typename K> size_type count(const K& key) const:  //  // Returns the number of elements comparing equal to the given `key` within  // the `btree_multiset`.  //  // Supports heterogeneous lookup, provided that the set is provided a  // compatible heterogeneous comparator.  using Base::count;  // btree_multiset::equal_range()  //  // Returns a closed range [first, last], defined by a `std::pair` of two  // iterators, containing all elements with the passed key in the  // `btree_multiset`.  using Base::equal_range;  // btree_multiset::find()  //  // template <typename K> iterator find(const K& key):  // template <typename K> const_iterator find(const K& key) const:  //  // Finds an element with the passed `key` within the `btree_multiset`.  //  // Supports heterogeneous lookup, provided that the set is provided a  // compatible heterogeneous comparator.  using Base::find;  // btree_multiset::get_allocator()  //  // Returns the allocator function associated with this `btree_multiset`.  using Base::get_allocator;  // btree_multiset::key_comp();  //  // Returns the key comparator associated with this `btree_multiset`.  using Base::key_comp;  // btree_multiset::value_comp();  //  // Returns the value comparator associated with this `btree_multiset`. The  // keys to sort the elements are the values themselves, therefore `value_comp`  // and its sibling member function `key_comp` are equivalent.  using Base::value_comp;};// absl::swap(absl::btree_multiset<>, absl::btree_multiset<>)//// Swaps the contents of two `absl::btree_multiset` containers.template <typename K, typename C, typename A>void swap(btree_multiset<K, C, A> &x, btree_multiset<K, C, A> &y) {  return x.swap(y);}// absl::erase_if(absl::btree_multiset<>, Pred)//// Erases all elements that satisfy the predicate pred from the container.template <typename K, typename C, typename A, typename Pred>void erase_if(btree_multiset<K, C, A> &set, Pred pred) {  for (auto it = set.begin(); it != set.end();) {    if (pred(*it)) {      it = set.erase(it);    } else {      ++it;    }  }}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_CONTAINER_BTREE_SET_H_
 |