| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 | 
							- // Copyright 2017 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #include "absl/random/zipf_distribution.h"
 
- #include <algorithm>
 
- #include <cstddef>
 
- #include <cstdint>
 
- #include <iterator>
 
- #include <random>
 
- #include <string>
 
- #include <utility>
 
- #include <vector>
 
- #include "gmock/gmock.h"
 
- #include "gtest/gtest.h"
 
- #include "absl/base/internal/raw_logging.h"
 
- #include "absl/random/internal/chi_square.h"
 
- #include "absl/random/internal/sequence_urbg.h"
 
- #include "absl/random/random.h"
 
- #include "absl/strings/str_cat.h"
 
- #include "absl/strings/str_replace.h"
 
- #include "absl/strings/strip.h"
 
- namespace {
 
- using ::absl::random_internal::kChiSquared;
 
- using ::testing::ElementsAre;
 
- template <typename IntType>
 
- class ZipfDistributionTypedTest : public ::testing::Test {};
 
- using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t,
 
-                                   uint8_t, uint16_t, uint32_t, uint64_t>;
 
- TYPED_TEST_CASE(ZipfDistributionTypedTest, IntTypes);
 
- TYPED_TEST(ZipfDistributionTypedTest, SerializeTest) {
 
-   using param_type = typename absl::zipf_distribution<TypeParam>::param_type;
 
-   constexpr int kCount = 1000;
 
-   absl::InsecureBitGen gen;
 
-   for (const auto& param : {
 
-            param_type(),
 
-            param_type(32),
 
-            param_type(100, 3, 2),
 
-            param_type(std::numeric_limits<TypeParam>::max(), 4, 3),
 
-            param_type(std::numeric_limits<TypeParam>::max() / 2),
 
-        }) {
 
-     // Validate parameters.
 
-     const auto k = param.k();
 
-     const auto q = param.q();
 
-     const auto v = param.v();
 
-     absl::zipf_distribution<TypeParam> before(k, q, v);
 
-     EXPECT_EQ(before.k(), param.k());
 
-     EXPECT_EQ(before.q(), param.q());
 
-     EXPECT_EQ(before.v(), param.v());
 
-     {
 
-       absl::zipf_distribution<TypeParam> via_param(param);
 
-       EXPECT_EQ(via_param, before);
 
-     }
 
-     // Validate stream serialization.
 
-     std::stringstream ss;
 
-     ss << before;
 
-     absl::zipf_distribution<TypeParam> after(4, 5.5, 4.4);
 
-     EXPECT_NE(before.k(), after.k());
 
-     EXPECT_NE(before.q(), after.q());
 
-     EXPECT_NE(before.v(), after.v());
 
-     EXPECT_NE(before.param(), after.param());
 
-     EXPECT_NE(before, after);
 
-     ss >> after;
 
-     EXPECT_EQ(before.k(), after.k());
 
-     EXPECT_EQ(before.q(), after.q());
 
-     EXPECT_EQ(before.v(), after.v());
 
-     EXPECT_EQ(before.param(), after.param());
 
-     EXPECT_EQ(before, after);
 
-     // Smoke test.
 
-     auto sample_min = after.max();
 
-     auto sample_max = after.min();
 
-     for (int i = 0; i < kCount; i++) {
 
-       auto sample = after(gen);
 
-       EXPECT_GE(sample, after.min());
 
-       EXPECT_LE(sample, after.max());
 
-       if (sample > sample_max) sample_max = sample;
 
-       if (sample < sample_min) sample_min = sample;
 
-     }
 
-     ABSL_INTERNAL_LOG(INFO,
 
-                       absl::StrCat("Range: ", +sample_min, ", ", +sample_max));
 
-   }
 
- }
 
- class ZipfModel {
 
-  public:
 
-   ZipfModel(size_t k, double q, double v) : k_(k), q_(q), v_(v) {}
 
-   double mean() const { return mean_; }
 
-   // For the other moments of the Zipf distribution, see, for example,
 
-   // http://mathworld.wolfram.com/ZipfDistribution.html
 
-   // PMF(k) = (1 / k^s) / H(N,s)
 
-   // Returns the probability that any single invocation returns k.
 
-   double PMF(size_t i) { return i >= hnq_.size() ? 0.0 : hnq_[i] / sum_hnq_; }
 
-   // CDF = H(k, s) / H(N,s)
 
-   double CDF(size_t i) {
 
-     if (i >= hnq_.size()) {
 
-       return 1.0;
 
-     }
 
-     auto it = std::begin(hnq_);
 
-     double h = 0.0;
 
-     for (const auto end = it; it != end; it++) {
 
-       h += *it;
 
-     }
 
-     return h / sum_hnq_;
 
-   }
 
-   // The InverseCDF returns the k values which bound p on the upper and lower
 
-   // bound. Since there is no closed-form solution, this is implemented as a
 
-   // bisction of the cdf.
 
-   std::pair<size_t, size_t> InverseCDF(double p) {
 
-     size_t min = 0;
 
-     size_t max = hnq_.size();
 
-     while (max > min + 1) {
 
-       size_t target = (max + min) >> 1;
 
-       double x = CDF(target);
 
-       if (x > p) {
 
-         max = target;
 
-       } else {
 
-         min = target;
 
-       }
 
-     }
 
-     return {min, max};
 
-   }
 
-   // Compute the probability totals, which are based on the generalized harmonic
 
-   // number, H(N,s).
 
-   //   H(N,s) == SUM(k=1..N, 1 / k^s)
 
-   //
 
-   // In the limit, H(N,s) == zetac(s) + 1.
 
-   //
 
-   // NOTE: The mean of a zipf distribution could be computed here as well.
 
-   // Mean :=  H(N, s-1) / H(N,s).
 
-   // Given the parameter v = 1, this gives the following function:
 
-   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
 
-   //
 
-   void Init() {
 
-     if (!hnq_.empty()) {
 
-       return;
 
-     }
 
-     hnq_.clear();
 
-     hnq_.reserve(std::min(k_, size_t{1000}));
 
-     sum_hnq_ = 0;
 
-     double qm1 = q_ - 1.0;
 
-     double sum_hnq_m1 = 0;
 
-     for (size_t i = 0; i < k_; i++) {
 
-       // Partial n-th generalized harmonic number
 
-       const double x = v_ + i;
 
-       // H(n, q-1)
 
-       const double hnqm1 =
 
-           (q_ == 2.0) ? (1.0 / x)
 
-                       : (q_ == 3.0) ? (1.0 / (x * x)) : std::pow(x, -qm1);
 
-       sum_hnq_m1 += hnqm1;
 
-       // H(n, q)
 
-       const double hnq =
 
-           (q_ == 2.0) ? (1.0 / (x * x))
 
-                       : (q_ == 3.0) ? (1.0 / (x * x * x)) : std::pow(x, -q_);
 
-       sum_hnq_ += hnq;
 
-       hnq_.push_back(hnq);
 
-       if (i > 1000 && hnq <= 1e-10) {
 
-         // The harmonic number is too small.
 
-         break;
 
-       }
 
-     }
 
-     assert(sum_hnq_ > 0);
 
-     mean_ = sum_hnq_m1 / sum_hnq_;
 
-   }
 
-  private:
 
-   const size_t k_;
 
-   const double q_;
 
-   const double v_;
 
-   double mean_;
 
-   std::vector<double> hnq_;
 
-   double sum_hnq_;
 
- };
 
- using zipf_u64 = absl::zipf_distribution<uint64_t>;
 
- class ZipfTest : public testing::TestWithParam<zipf_u64::param_type>,
 
-                  public ZipfModel {
 
-  public:
 
-   ZipfTest() : ZipfModel(GetParam().k(), GetParam().q(), GetParam().v()) {}
 
-   absl::InsecureBitGen rng_;
 
- };
 
- TEST_P(ZipfTest, ChiSquaredTest) {
 
-   const auto& param = GetParam();
 
-   Init();
 
-   size_t trials = 10000;
 
-   // Find the split-points for the buckets.
 
-   std::vector<size_t> points;
 
-   std::vector<double> expected;
 
-   {
 
-     double last_cdf = 0.0;
 
-     double min_p = 1.0;
 
-     for (double p = 0.01; p < 1.0; p += 0.01) {
 
-       auto x = InverseCDF(p);
 
-       if (points.empty() || points.back() < x.second) {
 
-         const double p = CDF(x.second);
 
-         points.push_back(x.second);
 
-         double q = p - last_cdf;
 
-         expected.push_back(q);
 
-         last_cdf = p;
 
-         if (q < min_p) {
 
-           min_p = q;
 
-         }
 
-       }
 
-     }
 
-     if (last_cdf < 0.999) {
 
-       points.push_back(std::numeric_limits<size_t>::max());
 
-       double q = 1.0 - last_cdf;
 
-       expected.push_back(q);
 
-       if (q < min_p) {
 
-         min_p = q;
 
-       }
 
-     } else {
 
-       points.back() = std::numeric_limits<size_t>::max();
 
-       expected.back() += (1.0 - last_cdf);
 
-     }
 
-     // The Chi-Squared score is not completely scale-invariant; it works best
 
-     // when the small values are in the small digits.
 
-     trials = static_cast<size_t>(8.0 / min_p);
 
-   }
 
-   ASSERT_GT(points.size(), 0);
 
-   // Generate n variates and fill the counts vector with the count of their
 
-   // occurrences.
 
-   std::vector<int64_t> buckets(points.size(), 0);
 
-   double avg = 0;
 
-   {
 
-     zipf_u64 dis(param);
 
-     for (size_t i = 0; i < trials; i++) {
 
-       uint64_t x = dis(rng_);
 
-       ASSERT_LE(x, dis.max());
 
-       ASSERT_GE(x, dis.min());
 
-       avg += static_cast<double>(x);
 
-       auto it = std::upper_bound(std::begin(points), std::end(points),
 
-                                  static_cast<size_t>(x));
 
-       buckets[std::distance(std::begin(points), it)]++;
 
-     }
 
-     avg = avg / static_cast<double>(trials);
 
-   }
 
-   // Validate the output using the Chi-Squared test.
 
-   for (auto& e : expected) {
 
-     e *= trials;
 
-   }
 
-   // The null-hypothesis is that the distribution is a poisson distribution with
 
-   // the provided mean (not estimated from the data).
 
-   const int dof = static_cast<int>(expected.size()) - 1;
 
-   // NOTE: This test runs about 15x per invocation, so a value of 0.9995 is
 
-   // approximately correct for a test suite failure rate of 1 in 100.  In
 
-   // practice we see failures slightly higher than that.
 
-   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.9999);
 
-   const double chi_square = absl::random_internal::ChiSquare(
 
-       std::begin(buckets), std::end(buckets), std::begin(expected),
 
-       std::end(expected));
 
-   const double p_actual =
 
-       absl::random_internal::ChiSquarePValue(chi_square, dof);
 
-   // Log if the chi_squared value is above the threshold.
 
-   if (chi_square > threshold) {
 
-     ABSL_INTERNAL_LOG(INFO, "values");
 
-     for (size_t i = 0; i < expected.size(); i++) {
 
-       ABSL_INTERNAL_LOG(INFO, absl::StrCat(points[i], ": ", buckets[i],
 
-                                            " vs. E=", expected[i]));
 
-     }
 
-     ABSL_INTERNAL_LOG(INFO, absl::StrCat("trials ", trials));
 
-     ABSL_INTERNAL_LOG(INFO,
 
-                       absl::StrCat("mean ", avg, " vs. expected ", mean()));
 
-     ABSL_INTERNAL_LOG(INFO, absl::StrCat(kChiSquared, "(data, ", dof, ") = ",
 
-                                          chi_square, " (", p_actual, ")"));
 
-     ABSL_INTERNAL_LOG(INFO,
 
-                       absl::StrCat(kChiSquared, " @ 0.9995 = ", threshold));
 
-     FAIL() << kChiSquared << " value of " << chi_square
 
-            << " is above the threshold.";
 
-   }
 
- }
 
- std::vector<zipf_u64::param_type> GenParams() {
 
-   using param = zipf_u64::param_type;
 
-   const auto k = param().k();
 
-   const auto q = param().q();
 
-   const auto v = param().v();
 
-   const uint64_t k2 = 1 << 10;
 
-   return std::vector<zipf_u64::param_type>{
 
-       // Default
 
-       param(k, q, v),
 
-       // vary K
 
-       param(4, q, v), param(1 << 4, q, v), param(k2, q, v),
 
-       // vary V
 
-       param(k2, q, 0.5), param(k2, q, 1.5), param(k2, q, 2.5), param(k2, q, 10),
 
-       // vary Q
 
-       param(k2, 1.5, v), param(k2, 3, v), param(k2, 5, v), param(k2, 10, v),
 
-       // Vary V & Q
 
-       param(k2, 1.5, 0.5), param(k2, 3, 1.5), param(k, 10, 10)};
 
- }
 
- std::string ParamName(
 
-     const ::testing::TestParamInfo<zipf_u64::param_type>& info) {
 
-   const auto& p = info.param;
 
-   std::string name = absl::StrCat("k_", p.k(), "__q_", absl::SixDigits(p.q()),
 
-                                   "__v_", absl::SixDigits(p.v()));
 
-   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
 
- }
 
- INSTANTIATE_TEST_SUITE_P(All, ZipfTest, ::testing::ValuesIn(GenParams()),
 
-                          ParamName);
 
- // NOTE: absl::zipf_distribution is not guaranteed to be stable.
 
- TEST(ZipfDistributionTest, StabilityTest) {
 
-   // absl::zipf_distribution stability relies on
 
-   // absl::uniform_real_distribution, std::log, std::exp, std::log1p
 
-   absl::random_internal::sequence_urbg urbg(
 
-       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 
-        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 
-        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 
-        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 
-   std::vector<int> output(10);
 
-   {
 
-     absl::zipf_distribution<int32_t> dist;
 
-     std::generate(std::begin(output), std::end(output),
 
-                   [&] { return dist(urbg); });
 
-     EXPECT_THAT(output, ElementsAre(10031, 0, 0, 3, 6, 0, 7, 47, 0, 0));
 
-   }
 
-   urbg.reset();
 
-   {
 
-     absl::zipf_distribution<int32_t> dist(std::numeric_limits<int32_t>::max(),
 
-                                           3.3);
 
-     std::generate(std::begin(output), std::end(output),
 
-                   [&] { return dist(urbg); });
 
-     EXPECT_THAT(output, ElementsAre(44, 0, 0, 0, 0, 1, 0, 1, 3, 0));
 
-   }
 
- }
 
- TEST(ZipfDistributionTest, AlgorithmBounds) {
 
-   absl::zipf_distribution<int32_t> dist;
 
-   // Small values from absl::uniform_real_distribution map to larger Zipf
 
-   // distribution values.
 
-   const std::pair<uint64_t, int32_t> kInputs[] = {
 
-       {0xffffffffffffffff, 0x0}, {0x7fffffffffffffff, 0x0},
 
-       {0x3ffffffffffffffb, 0x1}, {0x1ffffffffffffffd, 0x4},
 
-       {0xffffffffffffffe, 0x9},  {0x7ffffffffffffff, 0x12},
 
-       {0x3ffffffffffffff, 0x25}, {0x1ffffffffffffff, 0x4c},
 
-       {0xffffffffffffff, 0x99},  {0x7fffffffffffff, 0x132},
 
-       {0x3fffffffffffff, 0x265}, {0x1fffffffffffff, 0x4cc},
 
-       {0xfffffffffffff, 0x999},  {0x7ffffffffffff, 0x1332},
 
-       {0x3ffffffffffff, 0x2665}, {0x1ffffffffffff, 0x4ccc},
 
-       {0xffffffffffff, 0x9998},  {0x7fffffffffff, 0x1332f},
 
-       {0x3fffffffffff, 0x2665a}, {0x1fffffffffff, 0x4cc9e},
 
-       {0xfffffffffff, 0x998e0},  {0x7ffffffffff, 0x133051},
 
-       {0x3ffffffffff, 0x265ae4}, {0x1ffffffffff, 0x4c9ed3},
 
-       {0xffffffffff, 0x98e223},  {0x7fffffffff, 0x13058c4},
 
-       {0x3fffffffff, 0x25b178e}, {0x1fffffffff, 0x4a062b2},
 
-       {0xfffffffff, 0x8ee23b8},  {0x7ffffffff, 0x10b21642},
 
-       {0x3ffffffff, 0x1d89d89d}, {0x1ffffffff, 0x2fffffff},
 
-       {0xffffffff, 0x45d1745d},  {0x7fffffff, 0x5a5a5a5a},
 
-       {0x3fffffff, 0x69ee5846},  {0x1fffffff, 0x73ecade3},
 
-       {0xfffffff, 0x79a9d260},   {0x7ffffff, 0x7cc0532b},
 
-       {0x3ffffff, 0x7e5ad146},   {0x1ffffff, 0x7f2c0bec},
 
-       {0xffffff, 0x7f95adef},    {0x7fffff, 0x7fcac0da},
 
-       {0x3fffff, 0x7fe55ae2},    {0x1fffff, 0x7ff2ac0e},
 
-       {0xfffff, 0x7ff955ae},     {0x7ffff, 0x7ffcaac1},
 
-       {0x3ffff, 0x7ffe555b},     {0x1ffff, 0x7fff2aac},
 
-       {0xffff, 0x7fff9556},      {0x7fff, 0x7fffcaab},
 
-       {0x3fff, 0x7fffe555},      {0x1fff, 0x7ffff2ab},
 
-       {0xfff, 0x7ffff955},       {0x7ff, 0x7ffffcab},
 
-       {0x3ff, 0x7ffffe55},       {0x1ff, 0x7fffff2b},
 
-       {0xff, 0x7fffff95},        {0x7f, 0x7fffffcb},
 
-       {0x3f, 0x7fffffe5},        {0x1f, 0x7ffffff3},
 
-       {0xf, 0x7ffffff9},         {0x7, 0x7ffffffd},
 
-       {0x3, 0x7ffffffe},         {0x1, 0x7fffffff},
 
-   };
 
-   for (const auto& instance : kInputs) {
 
-     absl::random_internal::sequence_urbg urbg({instance.first});
 
-     EXPECT_EQ(instance.second, dist(urbg));
 
-   }
 
- }
 
- }  // namespace
 
 
  |