| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 | 
							- // Copyright 2017 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #include "absl/random/exponential_distribution.h"
 
- #include <algorithm>
 
- #include <cmath>
 
- #include <cstddef>
 
- #include <cstdint>
 
- #include <iterator>
 
- #include <limits>
 
- #include <random>
 
- #include <sstream>
 
- #include <string>
 
- #include <type_traits>
 
- #include <vector>
 
- #include "gmock/gmock.h"
 
- #include "gtest/gtest.h"
 
- #include "absl/base/internal/raw_logging.h"
 
- #include "absl/base/macros.h"
 
- #include "absl/random/internal/chi_square.h"
 
- #include "absl/random/internal/distribution_test_util.h"
 
- #include "absl/random/internal/sequence_urbg.h"
 
- #include "absl/random/random.h"
 
- #include "absl/strings/str_cat.h"
 
- #include "absl/strings/str_format.h"
 
- #include "absl/strings/str_replace.h"
 
- #include "absl/strings/strip.h"
 
- namespace {
 
- using absl::random_internal::kChiSquared;
 
- template <typename RealType>
 
- class ExponentialDistributionTypedTest : public ::testing::Test {};
 
- using RealTypes = ::testing::Types<float, double, long double>;
 
- TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
 
- TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
 
-   using param_type =
 
-       typename absl::exponential_distribution<TypeParam>::param_type;
 
-   const TypeParam kParams[] = {
 
-       // Cases around 1.
 
-       1,                                           //
 
-       std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
 
-       std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
 
-       // Typical cases.
 
-       TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
 
-       TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
 
-       // Boundary cases.
 
-       std::numeric_limits<TypeParam>::max(),
 
-       std::numeric_limits<TypeParam>::epsilon(),
 
-       std::nextafter(std::numeric_limits<TypeParam>::min(),
 
-                      TypeParam(1)),           // min + epsilon
 
-       std::numeric_limits<TypeParam>::min(),  // smallest normal
 
-       // There are some errors dealing with denorms on apple platforms.
 
-       std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
 
-       std::numeric_limits<TypeParam>::min() / 2,     // denorm
 
-       std::nextafter(std::numeric_limits<TypeParam>::min(),
 
-                      TypeParam(0)),  // denorm_max
 
-   };
 
-   constexpr int kCount = 1000;
 
-   absl::InsecureBitGen gen;
 
-   for (const TypeParam lambda : kParams) {
 
-     // Some values may be invalid; skip those.
 
-     if (!std::isfinite(lambda)) continue;
 
-     ABSL_ASSERT(lambda > 0);
 
-     const param_type param(lambda);
 
-     absl::exponential_distribution<TypeParam> before(lambda);
 
-     EXPECT_EQ(before.lambda(), param.lambda());
 
-     {
 
-       absl::exponential_distribution<TypeParam> via_param(param);
 
-       EXPECT_EQ(via_param, before);
 
-       EXPECT_EQ(via_param.param(), before.param());
 
-     }
 
-     // Smoke test.
 
-     auto sample_min = before.max();
 
-     auto sample_max = before.min();
 
-     for (int i = 0; i < kCount; i++) {
 
-       auto sample = before(gen);
 
-       EXPECT_GE(sample, before.min()) << before;
 
-       EXPECT_LE(sample, before.max()) << before;
 
-       if (sample > sample_max) sample_max = sample;
 
-       if (sample < sample_min) sample_min = sample;
 
-     }
 
-     if (!std::is_same<TypeParam, long double>::value) {
 
-       ABSL_INTERNAL_LOG(INFO,
 
-                         absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
 
-                                         sample_min, sample_max, lambda));
 
-     }
 
-     std::stringstream ss;
 
-     ss << before;
 
-     if (!std::isfinite(lambda)) {
 
-       // Streams do not deserialize inf/nan correctly.
 
-       continue;
 
-     }
 
-     // Validate stream serialization.
 
-     absl::exponential_distribution<TypeParam> after(34.56f);
 
-     EXPECT_NE(before.lambda(), after.lambda());
 
-     EXPECT_NE(before.param(), after.param());
 
-     EXPECT_NE(before, after);
 
-     ss >> after;
 
- #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
 
-     defined(__ppc__) || defined(__PPC__)
 
-     if (std::is_same<TypeParam, long double>::value) {
 
-       // Roundtripping floating point values requires sufficient precision to
 
-       // reconstruct the exact value. It turns out that long double has some
 
-       // errors doing this on ppc, particularly for values
 
-       // near {1.0 +/- epsilon}.
 
-       if (lambda <= std::numeric_limits<double>::max() &&
 
-           lambda >= std::numeric_limits<double>::lowest()) {
 
-         EXPECT_EQ(static_cast<double>(before.lambda()),
 
-                   static_cast<double>(after.lambda()))
 
-             << ss.str();
 
-       }
 
-       continue;
 
-     }
 
- #endif
 
-     EXPECT_EQ(before.lambda(), after.lambda())  //
 
-         << ss.str() << " "                      //
 
-         << (ss.good() ? "good " : "")           //
 
-         << (ss.bad() ? "bad " : "")             //
 
-         << (ss.eof() ? "eof " : "")             //
 
-         << (ss.fail() ? "fail " : "");
 
-   }
 
- }
 
- // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
 
- class ExponentialModel {
 
-  public:
 
-   explicit ExponentialModel(double lambda)
 
-       : lambda_(lambda), beta_(1.0 / lambda) {}
 
-   double lambda() const { return lambda_; }
 
-   double mean() const { return beta_; }
 
-   double variance() const { return beta_ * beta_; }
 
-   double stddev() const { return std::sqrt(variance()); }
 
-   double skew() const { return 2; }
 
-   double kurtosis() const { return 6.0; }
 
-   double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
 
-   // The inverse CDF, or PercentPoint function of the distribution
 
-   double InverseCDF(double p) {
 
-     ABSL_ASSERT(p >= 0.0);
 
-     ABSL_ASSERT(p < 1.0);
 
-     return -beta_ * std::log(1.0 - p);
 
-   }
 
-  private:
 
-   const double lambda_;
 
-   const double beta_;
 
- };
 
- struct Param {
 
-   double lambda;
 
-   double p_fail;
 
-   int trials;
 
- };
 
- class ExponentialDistributionTests : public testing::TestWithParam<Param>,
 
-                                      public ExponentialModel {
 
-  public:
 
-   ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
 
-   // SingleZTest provides a basic z-squared test of the mean vs. expected
 
-   // mean for data generated by the poisson distribution.
 
-   template <typename D>
 
-   bool SingleZTest(const double p, const size_t samples);
 
-   // SingleChiSquaredTest provides a basic chi-squared test of the normal
 
-   // distribution.
 
-   template <typename D>
 
-   double SingleChiSquaredTest();
 
-   absl::InsecureBitGen rng_;
 
- };
 
- template <typename D>
 
- bool ExponentialDistributionTests::SingleZTest(const double p,
 
-                                                const size_t samples) {
 
-   D dis(lambda());
 
-   std::vector<double> data;
 
-   data.reserve(samples);
 
-   for (size_t i = 0; i < samples; i++) {
 
-     const double x = dis(rng_);
 
-     data.push_back(x);
 
-   }
 
-   const auto m = absl::random_internal::ComputeDistributionMoments(data);
 
-   const double max_err = absl::random_internal::MaxErrorTolerance(p);
 
-   const double z = absl::random_internal::ZScore(mean(), m);
 
-   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
 
-   if (!pass) {
 
-     ABSL_INTERNAL_LOG(
 
-         INFO, absl::StrFormat("p=%f max_err=%f\n"
 
-                               " lambda=%f\n"
 
-                               " mean=%f vs. %f\n"
 
-                               " stddev=%f vs. %f\n"
 
-                               " skewness=%f vs. %f\n"
 
-                               " kurtosis=%f vs. %f\n"
 
-                               " z=%f vs. 0",
 
-                               p, max_err, lambda(), m.mean, mean(),
 
-                               std::sqrt(m.variance), stddev(), m.skewness,
 
-                               skew(), m.kurtosis, kurtosis(), z));
 
-   }
 
-   return pass;
 
- }
 
- template <typename D>
 
- double ExponentialDistributionTests::SingleChiSquaredTest() {
 
-   const size_t kSamples = 10000;
 
-   const int kBuckets = 50;
 
-   // The InverseCDF is the percent point function of the distribution, and can
 
-   // be used to assign buckets roughly uniformly.
 
-   std::vector<double> cutoffs;
 
-   const double kInc = 1.0 / static_cast<double>(kBuckets);
 
-   for (double p = kInc; p < 1.0; p += kInc) {
 
-     cutoffs.push_back(InverseCDF(p));
 
-   }
 
-   if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
 
-     cutoffs.push_back(std::numeric_limits<double>::infinity());
 
-   }
 
-   D dis(lambda());
 
-   std::vector<int32_t> counts(cutoffs.size(), 0);
 
-   for (int j = 0; j < kSamples; j++) {
 
-     const double x = dis(rng_);
 
-     auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
 
-     counts[std::distance(cutoffs.begin(), it)]++;
 
-   }
 
-   // Null-hypothesis is that the distribution is exponentially distributed
 
-   // with the provided lambda (not estimated from the data).
 
-   const int dof = static_cast<int>(counts.size()) - 1;
 
-   // Our threshold for logging is 1-in-50.
 
-   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
 
-   const double expected =
 
-       static_cast<double>(kSamples) / static_cast<double>(counts.size());
 
-   double chi_square = absl::random_internal::ChiSquareWithExpected(
 
-       std::begin(counts), std::end(counts), expected);
 
-   double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
 
-   if (chi_square > threshold) {
 
-     for (int i = 0; i < cutoffs.size(); i++) {
 
-       ABSL_INTERNAL_LOG(
 
-           INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
 
-     }
 
-     ABSL_INTERNAL_LOG(INFO,
 
-                       absl::StrCat("lambda ", lambda(), "\n",     //
 
-                                    " expected ", expected, "\n",  //
 
-                                    kChiSquared, " ", chi_square, " (", p, ")\n",
 
-                                    kChiSquared, " @ 0.98 = ", threshold));
 
-   }
 
-   return p;
 
- }
 
- TEST_P(ExponentialDistributionTests, ZTest) {
 
-   const size_t kSamples = 10000;
 
-   const auto& param = GetParam();
 
-   const int expected_failures =
 
-       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
 
-   const double p = absl::random_internal::RequiredSuccessProbability(
 
-       param.p_fail, param.trials);
 
-   int failures = 0;
 
-   for (int i = 0; i < param.trials; i++) {
 
-     failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
 
-                     ? 0
 
-                     : 1;
 
-   }
 
-   EXPECT_LE(failures, expected_failures);
 
- }
 
- TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
 
-   const int kTrials = 20;
 
-   int failures = 0;
 
-   for (int i = 0; i < kTrials; i++) {
 
-     double p_value =
 
-         SingleChiSquaredTest<absl::exponential_distribution<double>>();
 
-     if (p_value < 0.005) {  // 1/200
 
-       failures++;
 
-     }
 
-   }
 
-   // There is a 0.10% chance of producing at least one failure, so raise the
 
-   // failure threshold high enough to allow for a flake rate < 10,000.
 
-   EXPECT_LE(failures, 4);
 
- }
 
- std::vector<Param> GenParams() {
 
-   return {
 
-       Param{1.0, 0.02, 100},
 
-       Param{2.5, 0.02, 100},
 
-       Param{10, 0.02, 100},
 
-       // large
 
-       Param{1e4, 0.02, 100},
 
-       Param{1e9, 0.02, 100},
 
-       // small
 
-       Param{0.1, 0.02, 100},
 
-       Param{1e-3, 0.02, 100},
 
-       Param{1e-5, 0.02, 100},
 
-   };
 
- }
 
- std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
 
-   const auto& p = info.param;
 
-   std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
 
-   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
 
- }
 
- INSTANTIATE_TEST_CASE_P(, ExponentialDistributionTests,
 
-                         ::testing::ValuesIn(GenParams()), ParamName);
 
- // NOTE: absl::exponential_distribution is not guaranteed to be stable.
 
- TEST(ExponentialDistributionTest, StabilityTest) {
 
-   // absl::exponential_distribution stability relies on std::log1p and
 
-   // absl::uniform_real_distribution.
 
-   absl::random_internal::sequence_urbg urbg(
 
-       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 
-        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 
-        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 
-        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 
-   std::vector<int> output(14);
 
-   {
 
-     absl::exponential_distribution<double> dist;
 
-     std::generate(std::begin(output), std::end(output),
 
-                   [&] { return static_cast<int>(10000.0 * dist(urbg)); });
 
-     EXPECT_EQ(14, urbg.invocations());
 
-     EXPECT_THAT(output,
 
-                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
 
-                                      804, 126, 12337, 17984, 27002, 0, 71913));
 
-   }
 
-   urbg.reset();
 
-   {
 
-     absl::exponential_distribution<float> dist;
 
-     std::generate(std::begin(output), std::end(output),
 
-                   [&] { return static_cast<int>(10000.0f * dist(urbg)); });
 
-     EXPECT_EQ(14, urbg.invocations());
 
-     EXPECT_THAT(output,
 
-                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
 
-                                      804, 126, 12337, 17984, 27002, 0, 71913));
 
-   }
 
- }
 
- TEST(ExponentialDistributionTest, AlgorithmBounds) {
 
-   // Relies on absl::uniform_real_distribution, so some of these comments
 
-   // reference that.
 
-   absl::exponential_distribution<double> dist;
 
-   {
 
-     // This returns the smallest value >0 from absl::uniform_real_distribution.
 
-     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
 
-     double a = dist(urbg);
 
-     EXPECT_EQ(a, 5.42101086242752217004e-20);
 
-   }
 
-   {
 
-     // This returns a value very near 0.5 from absl::uniform_real_distribution.
 
-     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
 
-     double a = dist(urbg);
 
-     EXPECT_EQ(a, 0.693147180559945175204);
 
-   }
 
-   {
 
-     // This returns the largest value <1 from absl::uniform_real_distribution.
 
-     // WolframAlpha: ~39.1439465808987766283058547296341915292187253
 
-     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
 
-     double a = dist(urbg);
 
-     EXPECT_EQ(a, 36.7368005696771007251);
 
-   }
 
-   {
 
-     // This *ALSO* returns the largest value <1.
 
-     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
 
-     double a = dist(urbg);
 
-     EXPECT_EQ(a, 36.7368005696771007251);
 
-   }
 
- }
 
- }  // namespace
 
 
  |