| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 | 
							- // Copyright 2017 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 
- #define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 
- #include <cassert>
 
- #include <cmath>
 
- #include <istream>
 
- #include <limits>
 
- #include <type_traits>
 
- #include "absl/random/internal/distribution_impl.h"
 
- #include "absl/random/internal/fast_uniform_bits.h"
 
- #include "absl/random/internal/iostream_state_saver.h"
 
- namespace absl {
 
- // absl::exponential_distribution:
 
- // Generates a number conforming to an exponential distribution and is
 
- // equivalent to the standard [rand.dist.pois.exp] distribution.
 
- template <typename RealType = double>
 
- class exponential_distribution {
 
-  public:
 
-   using result_type = RealType;
 
-   class param_type {
 
-    public:
 
-     using distribution_type = exponential_distribution;
 
-     explicit param_type(result_type lambda = 1) : lambda_(lambda) {
 
-       assert(lambda > 0);
 
-       neg_inv_lambda_ = -result_type(1) / lambda_;
 
-     }
 
-     result_type lambda() const { return lambda_; }
 
-     friend bool operator==(const param_type& a, const param_type& b) {
 
-       return a.lambda_ == b.lambda_;
 
-     }
 
-     friend bool operator!=(const param_type& a, const param_type& b) {
 
-       return !(a == b);
 
-     }
 
-    private:
 
-     friend class exponential_distribution;
 
-     result_type lambda_;
 
-     result_type neg_inv_lambda_;
 
-     static_assert(
 
-         std::is_floating_point<RealType>::value,
 
-         "Class-template absl::exponential_distribution<> must be parameterized "
 
-         "using a floating-point type.");
 
-   };
 
-   exponential_distribution() : exponential_distribution(1) {}
 
-   explicit exponential_distribution(result_type lambda) : param_(lambda) {}
 
-   explicit exponential_distribution(const param_type& p) : param_(p) {}
 
-   void reset() {}
 
-   // Generating functions
 
-   template <typename URBG>
 
-   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 
-     return (*this)(g, param_);
 
-   }
 
-   template <typename URBG>
 
-   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 
-                          const param_type& p);
 
-   param_type param() const { return param_; }
 
-   void param(const param_type& p) { param_ = p; }
 
-   result_type(min)() const { return 0; }
 
-   result_type(max)() const {
 
-     return std::numeric_limits<result_type>::infinity();
 
-   }
 
-   result_type lambda() const { return param_.lambda(); }
 
-   friend bool operator==(const exponential_distribution& a,
 
-                          const exponential_distribution& b) {
 
-     return a.param_ == b.param_;
 
-   }
 
-   friend bool operator!=(const exponential_distribution& a,
 
-                          const exponential_distribution& b) {
 
-     return a.param_ != b.param_;
 
-   }
 
-  private:
 
-   param_type param_;
 
-   random_internal::FastUniformBits<uint64_t> fast_u64_;
 
- };
 
- // --------------------------------------------------------------------------
 
- // Implementation details follow
 
- // --------------------------------------------------------------------------
 
- template <typename RealType>
 
- template <typename URBG>
 
- typename exponential_distribution<RealType>::result_type
 
- exponential_distribution<RealType>::operator()(
 
-     URBG& g,  // NOLINT(runtime/references)
 
-     const param_type& p) {
 
-   using random_internal::NegativeValueT;
 
-   const result_type u = random_internal::RandU64ToReal<
 
-       result_type>::template Value<NegativeValueT, false>(fast_u64_(g));
 
-   // log1p(-x) is mathematically equivalent to log(1 - x) but has more
 
-   // accuracy for x near zero.
 
-   return p.neg_inv_lambda_ * std::log1p(u);
 
- }
 
- template <typename CharT, typename Traits, typename RealType>
 
- std::basic_ostream<CharT, Traits>& operator<<(
 
-     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 
-     const exponential_distribution<RealType>& x) {
 
-   auto saver = random_internal::make_ostream_state_saver(os);
 
-   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
 
-   os << x.lambda();
 
-   return os;
 
- }
 
- template <typename CharT, typename Traits, typename RealType>
 
- std::basic_istream<CharT, Traits>& operator>>(
 
-     std::basic_istream<CharT, Traits>& is,    // NOLINT(runtime/references)
 
-     exponential_distribution<RealType>& x) {  // NOLINT(runtime/references)
 
-   using result_type = typename exponential_distribution<RealType>::result_type;
 
-   using param_type = typename exponential_distribution<RealType>::param_type;
 
-   result_type lambda;
 
-   auto saver = random_internal::make_istream_state_saver(is);
 
-   lambda = random_internal::read_floating_point<result_type>(is);
 
-   if (!is.fail()) {
 
-     x.param(param_type(lambda));
 
-   }
 
-   return is;
 
- }
 
- }  // namespace absl
 
- #endif  // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
 
 
  |