| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 | 
							- // Copyright 2017 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #include "absl/random/discrete_distribution.h"
 
- #include <cmath>
 
- #include <cstddef>
 
- #include <cstdint>
 
- #include <iterator>
 
- #include <numeric>
 
- #include <random>
 
- #include <sstream>
 
- #include <string>
 
- #include <vector>
 
- #include "gmock/gmock.h"
 
- #include "gtest/gtest.h"
 
- #include "absl/base/internal/raw_logging.h"
 
- #include "absl/random/internal/chi_square.h"
 
- #include "absl/random/internal/distribution_test_util.h"
 
- #include "absl/random/internal/sequence_urbg.h"
 
- #include "absl/random/random.h"
 
- #include "absl/strings/str_cat.h"
 
- #include "absl/strings/strip.h"
 
- namespace {
 
- template <typename IntType>
 
- class DiscreteDistributionTypeTest : public ::testing::Test {};
 
- using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
 
-                                   uint32_t, int64_t, uint64_t>;
 
- TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);
 
- TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
 
-   using param_type =
 
-       typename absl::discrete_distribution<TypeParam>::param_type;
 
-   absl::discrete_distribution<TypeParam> empty;
 
-   EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));
 
-   absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});
 
-   // Validate that the probabilities sum to 1.0. We picked values which
 
-   // can be represented exactly to avoid floating-point roundoff error.
 
-   double s = 0;
 
-   for (const auto& x : before.probabilities()) {
 
-     s += x;
 
-   }
 
-   EXPECT_EQ(s, 1.0);
 
-   EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));
 
-   // Validate the same data via an initializer list.
 
-   {
 
-     std::vector<double> data({1.0, 2.0, 1.0});
 
-     absl::discrete_distribution<TypeParam> via_param{
 
-         param_type(std::begin(data), std::end(data))};
 
-     EXPECT_EQ(via_param, before);
 
-   }
 
-   std::stringstream ss;
 
-   ss << before;
 
-   absl::discrete_distribution<TypeParam> after;
 
-   EXPECT_NE(before, after);
 
-   ss >> after;
 
-   EXPECT_EQ(before, after);
 
- }
 
- TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
 
-   auto fn = [](double x) { return x; };
 
-   {
 
-     absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
 
-     EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
 
-   }
 
-   {
 
-     absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
 
-     // => fn(1.0 + 0 * 4 + 2) => 3
 
-     // => fn(1.0 + 1 * 4 + 2) => 7
 
-     EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
 
-   }
 
- }
 
- TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
 
-   using testing::Pair;
 
-   {
 
-     std::vector<double> p({1.0, 2.0, 3.0});
 
-     std::vector<std::pair<double, size_t>> q =
 
-         absl::random_internal::InitDiscreteDistribution(&p);
 
-     EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));
 
-     // Each bucket is p=1/3, so bucket 0 will send half it's traffic
 
-     // to bucket 2, while the rest will retain all of their traffic.
 
-     EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2),  //
 
-                                         Pair(1.0, 1),  //
 
-                                         Pair(1.0, 2)));
 
-   }
 
-   {
 
-     std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});
 
-     std::vector<std::pair<double, size_t>> q =
 
-         absl::random_internal::InitDiscreteDistribution(&p);
 
-     EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
 
-                                         2 / 13.0));
 
-     // A more complex bucketing solution: Each bucket has p=0.2
 
-     // So buckets 0, 1, 4 will send their alternate traffic elsewhere, which
 
-     // happens to be bucket 3.
 
-     // However, summing up that alternate traffic gives bucket 3 too much
 
-     // traffic, so it will send some traffic to bucket 2.
 
-     constexpr double b0 = 1.0 / 13.0 / 0.2;
 
-     constexpr double b1 = 2.0 / 13.0 / 0.2;
 
-     constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
 
-     EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3),   //
 
-                                         Pair(b1, 3),   //
 
-                                         Pair(1.0, 2),  //
 
-                                         Pair(b3, 2),   //
 
-                                         Pair(b1, 3)));
 
-   }
 
- }
 
- TEST(DiscreteDistributionTest, ChiSquaredTest50) {
 
-   using absl::random_internal::kChiSquared;
 
-   constexpr size_t kTrials = 10000;
 
-   constexpr int kBuckets = 50;  // inclusive, so actally +1
 
-   // 1-in-100000 threshold, but remember, there are about 8 tests
 
-   // in this file. And the test could fail for other reasons.
 
-   // Empirically validated with --runs_per_test=10000.
 
-   const int kThreshold =
 
-       absl::random_internal::ChiSquareValue(kBuckets, 0.99999);
 
-   std::vector<double> weights(kBuckets, 0);
 
-   std::iota(std::begin(weights), std::end(weights), 1);
 
-   absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));
 
-   absl::InsecureBitGen rng;
 
-   std::vector<int32_t> counts(kBuckets, 0);
 
-   for (size_t i = 0; i < kTrials; i++) {
 
-     auto x = dist(rng);
 
-     counts[x]++;
 
-   }
 
-   // Scale weights.
 
-   double sum = 0;
 
-   for (double x : weights) {
 
-     sum += x;
 
-   }
 
-   for (double& x : weights) {
 
-     x = kTrials * (x / sum);
 
-   }
 
-   double chi_square =
 
-       absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
 
-                                        std::begin(weights), std::end(weights));
 
-   if (chi_square > kThreshold) {
 
-     double p_value =
 
-         absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
 
-     // Chi-squared test failed. Output does not appear to be uniform.
 
-     std::string msg;
 
-     for (size_t i = 0; i < counts.size(); i++) {
 
-       absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
 
-     }
 
-     absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
 
-     absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
 
-                     kThreshold);
 
-     ABSL_RAW_LOG(INFO, "%s", msg.c_str());
 
-     FAIL() << msg;
 
-   }
 
- }
 
- TEST(DiscreteDistributionTest, StabilityTest) {
 
-   // absl::discrete_distribution stabilitiy relies on
 
-   // absl::uniform_int_distribution and absl::bernoulli_distribution.
 
-   absl::random_internal::sequence_urbg urbg(
 
-       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 
-        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 
-        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 
-        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 
-   std::vector<int> output(6);
 
-   {
 
-     absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
 
-     EXPECT_EQ(0, dist.min());
 
-     EXPECT_EQ(4, dist.max());
 
-     for (auto& v : output) {
 
-       v = dist(urbg);
 
-     }
 
-     EXPECT_EQ(12, urbg.invocations());
 
-   }
 
-   // With 12 calls to urbg, each call into discrete_distribution consumes
 
-   // precisely 2 values: one for the uniform call, and a second for the
 
-   // bernoulli.
 
-   //
 
-   // Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can
 
-   //
 
-   // uniform:      443210143131
 
-   // bernoulli: b0 000011100101
 
-   // bernoulli: b1 001111101101
 
-   // bernoulli: b2 111111111111
 
-   // bernoulli: b3 001111101111
 
-   // bernoulli: b4 001111101101
 
-   // ...
 
-   EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));
 
-   {
 
-     urbg.reset();
 
-     absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
 
-     EXPECT_EQ(0, dist.min());
 
-     EXPECT_EQ(4, dist.max());
 
-     for (auto& v : output) {
 
-       v = dist(urbg);
 
-     }
 
-     EXPECT_EQ(12, urbg.invocations());
 
-   }
 
-   EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
 
- }
 
- }  // namespace
 
 
  |