| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// This file declares INTERNAL parts of the Split API that are inline/templated// or otherwise need to be available at compile time. The main abstractions// defined in here are////   - ConvertibleToStringView//   - SplitIterator<>//   - Splitter<>//// DO NOT INCLUDE THIS FILE DIRECTLY. Use this file by including// absl/strings/str_split.h.//// IWYU pragma: private, include "absl/strings/str_split.h"#ifndef ABSL_STRINGS_INTERNAL_STR_SPLIT_INTERNAL_H_#define ABSL_STRINGS_INTERNAL_STR_SPLIT_INTERNAL_H_#include <array>#include <initializer_list>#include <iterator>#include <map>#include <type_traits>#include <utility>#include <vector>#include "absl/base/macros.h"#include "absl/base/port.h"#include "absl/meta/type_traits.h"#include "absl/strings/string_view.h"#ifdef _GLIBCXX_DEBUG#include "absl/strings/internal/stl_type_traits.h"#endif  // _GLIBCXX_DEBUGnamespace absl {ABSL_NAMESPACE_BEGINnamespace strings_internal {// This class is implicitly constructible from everything that absl::string_view// is implicitly constructible from. If it's constructed from a temporary// string, the data is moved into a data member so its lifetime matches that of// the ConvertibleToStringView instance.class ConvertibleToStringView { public:  ConvertibleToStringView(const char* s)  // NOLINT(runtime/explicit)      : value_(s) {}  ConvertibleToStringView(char* s) : value_(s) {}  // NOLINT(runtime/explicit)  ConvertibleToStringView(absl::string_view s)     // NOLINT(runtime/explicit)      : value_(s) {}  ConvertibleToStringView(const std::string& s)  // NOLINT(runtime/explicit)      : value_(s) {}  // Matches rvalue strings and moves their data to a member.  ConvertibleToStringView(std::string&& s)  // NOLINT(runtime/explicit)      : copy_(std::move(s)), value_(copy_) {}  ConvertibleToStringView(const ConvertibleToStringView& other)      : copy_(other.copy_),        value_(other.IsSelfReferential() ? copy_ : other.value_) {}  ConvertibleToStringView(ConvertibleToStringView&& other) {    StealMembers(std::move(other));  }  ConvertibleToStringView& operator=(ConvertibleToStringView other) {    StealMembers(std::move(other));    return *this;  }  absl::string_view value() const { return value_; } private:  // Returns true if ctsp's value refers to its internal copy_ member.  bool IsSelfReferential() const { return value_.data() == copy_.data(); }  void StealMembers(ConvertibleToStringView&& other) {    if (other.IsSelfReferential()) {      copy_ = std::move(other.copy_);      value_ = copy_;      other.value_ = other.copy_;    } else {      value_ = other.value_;    }  }  // Holds the data moved from temporary std::string arguments. Declared first  // so that 'value' can refer to 'copy_'.  std::string copy_;  absl::string_view value_;};// An iterator that enumerates the parts of a string from a Splitter. The text// to be split, the Delimiter, and the Predicate are all taken from the given// Splitter object. Iterators may only be compared if they refer to the same// Splitter instance.//// This class is NOT part of the public splitting API.template <typename Splitter>class SplitIterator { public:  using iterator_category = std::input_iterator_tag;  using value_type = absl::string_view;  using difference_type = ptrdiff_t;  using pointer = const value_type*;  using reference = const value_type&;  enum State { kInitState, kLastState, kEndState };  SplitIterator(State state, const Splitter* splitter)      : pos_(0),        state_(state),        splitter_(splitter),        delimiter_(splitter->delimiter()),        predicate_(splitter->predicate()) {    // Hack to maintain backward compatibility. This one block makes it so an    // empty absl::string_view whose .data() happens to be nullptr behaves    // *differently* from an otherwise empty absl::string_view whose .data() is    // not nullptr. This is an undesirable difference in general, but this    // behavior is maintained to avoid breaking existing code that happens to    // depend on this old behavior/bug. Perhaps it will be fixed one day. The    // difference in behavior is as follows:    //   Split(absl::string_view(""), '-');  // {""}    //   Split(absl::string_view(), '-');    // {}    if (splitter_->text().data() == nullptr) {      state_ = kEndState;      pos_ = splitter_->text().size();      return;    }    if (state_ == kEndState) {      pos_ = splitter_->text().size();    } else {      ++(*this);    }  }  bool at_end() const { return state_ == kEndState; }  reference operator*() const { return curr_; }  pointer operator->() const { return &curr_; }  SplitIterator& operator++() {    do {      if (state_ == kLastState) {        state_ = kEndState;        return *this;      }      const absl::string_view text = splitter_->text();      const absl::string_view d = delimiter_.Find(text, pos_);      if (d.data() == text.data() + text.size()) state_ = kLastState;      curr_ = text.substr(pos_, d.data() - (text.data() + pos_));      pos_ += curr_.size() + d.size();    } while (!predicate_(curr_));    return *this;  }  SplitIterator operator++(int) {    SplitIterator old(*this);    ++(*this);    return old;  }  friend bool operator==(const SplitIterator& a, const SplitIterator& b) {    return a.state_ == b.state_ && a.pos_ == b.pos_;  }  friend bool operator!=(const SplitIterator& a, const SplitIterator& b) {    return !(a == b);  } private:  size_t pos_;  State state_;  absl::string_view curr_;  const Splitter* splitter_;  typename Splitter::DelimiterType delimiter_;  typename Splitter::PredicateType predicate_;};// HasMappedType<T>::value is true iff there exists a type T::mapped_type.template <typename T, typename = void>struct HasMappedType : std::false_type {};template <typename T>struct HasMappedType<T, absl::void_t<typename T::mapped_type>>    : std::true_type {};// HasValueType<T>::value is true iff there exists a type T::value_type.template <typename T, typename = void>struct HasValueType : std::false_type {};template <typename T>struct HasValueType<T, absl::void_t<typename T::value_type>> : std::true_type {};// HasConstIterator<T>::value is true iff there exists a type T::const_iterator.template <typename T, typename = void>struct HasConstIterator : std::false_type {};template <typename T>struct HasConstIterator<T, absl::void_t<typename T::const_iterator>>    : std::true_type {};// IsInitializerList<T>::value is true iff T is an std::initializer_list. More// details below in Splitter<> where this is used.std::false_type IsInitializerListDispatch(...);  // default: Notemplate <typename T>std::true_type IsInitializerListDispatch(std::initializer_list<T>*);template <typename T>struct IsInitializerList    : decltype(IsInitializerListDispatch(static_cast<T*>(nullptr))) {};// A SplitterIsConvertibleTo<C>::type alias exists iff the specified condition// is true for type 'C'.//// Restricts conversion to container-like types (by testing for the presence of// a const_iterator member type) and also to disable conversion to an// std::initializer_list (which also has a const_iterator). Otherwise, code// compiled in C++11 will get an error due to ambiguous conversion paths (in// C++11 std::vector<T>::operator= is overloaded to take either a std::vector<T>// or an std::initializer_list<T>).template <typename C, bool has_value_type, bool has_mapped_type>struct SplitterIsConvertibleToImpl : std::false_type {};template <typename C>struct SplitterIsConvertibleToImpl<C, true, false>    : std::is_constructible<typename C::value_type, absl::string_view> {};template <typename C>struct SplitterIsConvertibleToImpl<C, true, true>    : absl::conjunction<          std::is_constructible<typename C::key_type, absl::string_view>,          std::is_constructible<typename C::mapped_type, absl::string_view>> {};template <typename C>struct SplitterIsConvertibleTo    : SplitterIsConvertibleToImpl<          C,#ifdef _GLIBCXX_DEBUG          !IsStrictlyBaseOfAndConvertibleToSTLContainer<C>::value &&#endif  // _GLIBCXX_DEBUG              !IsInitializerList<                  typename std::remove_reference<C>::type>::value &&              HasValueType<C>::value && HasConstIterator<C>::value,          HasMappedType<C>::value> {};// This class implements the range that is returned by absl::StrSplit(). This// class has templated conversion operators that allow it to be implicitly// converted to a variety of types that the caller may have specified on the// left-hand side of an assignment.//// The main interface for interacting with this class is through its implicit// conversion operators. However, this class may also be used like a container// in that it has .begin() and .end() member functions. It may also be used// within a range-for loop.//// Output containers can be collections of any type that is constructible from// an absl::string_view.//// An Predicate functor may be supplied. This predicate will be used to filter// the split strings: only strings for which the predicate returns true will be// kept. A Predicate object is any unary functor that takes an absl::string_view// and returns bool.template <typename Delimiter, typename Predicate>class Splitter { public:  using DelimiterType = Delimiter;  using PredicateType = Predicate;  using const_iterator = strings_internal::SplitIterator<Splitter>;  using value_type = typename std::iterator_traits<const_iterator>::value_type;  Splitter(ConvertibleToStringView input_text, Delimiter d, Predicate p)      : text_(std::move(input_text)),        delimiter_(std::move(d)),        predicate_(std::move(p)) {}  absl::string_view text() const { return text_.value(); }  const Delimiter& delimiter() const { return delimiter_; }  const Predicate& predicate() const { return predicate_; }  // Range functions that iterate the split substrings as absl::string_view  // objects. These methods enable a Splitter to be used in a range-based for  // loop.  const_iterator begin() const { return {const_iterator::kInitState, this}; }  const_iterator end() const { return {const_iterator::kEndState, this}; }  // An implicit conversion operator that is restricted to only those containers  // that the splitter is convertible to.  template <typename Container,            typename = typename std::enable_if<                SplitterIsConvertibleTo<Container>::value>::type>  operator Container() const {  // NOLINT(runtime/explicit)    return ConvertToContainer<Container, typename Container::value_type,                              HasMappedType<Container>::value>()(*this);  }  // Returns a pair with its .first and .second members set to the first two  // strings returned by the begin() iterator. Either/both of .first and .second  // will be constructed with empty strings if the iterator doesn't have a  // corresponding value.  template <typename First, typename Second>  operator std::pair<First, Second>() const {  // NOLINT(runtime/explicit)    absl::string_view first, second;    auto it = begin();    if (it != end()) {      first = *it;      if (++it != end()) {        second = *it;      }    }    return {First(first), Second(second)};  } private:  // ConvertToContainer is a functor converting a Splitter to the requested  // Container of ValueType. It is specialized below to optimize splitting to  // certain combinations of Container and ValueType.  //  // This base template handles the generic case of storing the split results in  // the requested non-map-like container and converting the split substrings to  // the requested type.  template <typename Container, typename ValueType, bool is_map = false>  struct ConvertToContainer {    Container operator()(const Splitter& splitter) const {      Container c;      auto it = std::inserter(c, c.end());      for (const auto& sp : splitter) {        *it++ = ValueType(sp);      }      return c;    }  };  // Partial specialization for a std::vector<absl::string_view>.  //  // Optimized for the common case of splitting to a  // std::vector<absl::string_view>. In this case we first split the results to  // a small array of absl::string_view on the stack, to reduce reallocations.  template <typename A>  struct ConvertToContainer<std::vector<absl::string_view, A>,                            absl::string_view, false> {    std::vector<absl::string_view, A> operator()(        const Splitter& splitter) const {      struct raw_view {        const char* data;        size_t size;        operator absl::string_view() const {  // NOLINT(runtime/explicit)          return {data, size};        }      };      std::vector<absl::string_view, A> v;      std::array<raw_view, 16> ar;      for (auto it = splitter.begin(); !it.at_end();) {        size_t index = 0;        do {          ar[index].data = it->data();          ar[index].size = it->size();          ++it;        } while (++index != ar.size() && !it.at_end());        v.insert(v.end(), ar.begin(), ar.begin() + index);      }      return v;    }  };  // Partial specialization for a std::vector<std::string>.  //  // Optimized for the common case of splitting to a std::vector<std::string>.  // In this case we first split the results to a std::vector<absl::string_view>  // so the returned std::vector<std::string> can have space reserved to avoid  // std::string moves.  template <typename A>  struct ConvertToContainer<std::vector<std::string, A>, std::string, false> {    std::vector<std::string, A> operator()(const Splitter& splitter) const {      const std::vector<absl::string_view> v = splitter;      return std::vector<std::string, A>(v.begin(), v.end());    }  };  // Partial specialization for containers of pairs (e.g., maps).  //  // The algorithm is to insert a new pair into the map for each even-numbered  // item, with the even-numbered item as the key with a default-constructed  // value. Each odd-numbered item will then be assigned to the last pair's  // value.  template <typename Container, typename First, typename Second>  struct ConvertToContainer<Container, std::pair<const First, Second>, true> {    Container operator()(const Splitter& splitter) const {      Container m;      typename Container::iterator it;      bool insert = true;      for (const auto& sp : splitter) {        if (insert) {          it = Inserter<Container>::Insert(&m, First(sp), Second());        } else {          it->second = Second(sp);        }        insert = !insert;      }      return m;    }    // Inserts the key and value into the given map, returning an iterator to    // the inserted item. Specialized for std::map and std::multimap to use    // emplace() and adapt emplace()'s return value.    template <typename Map>    struct Inserter {      using M = Map;      template <typename... Args>      static typename M::iterator Insert(M* m, Args&&... args) {        return m->insert(std::make_pair(std::forward<Args>(args)...)).first;      }    };    template <typename... Ts>    struct Inserter<std::map<Ts...>> {      using M = std::map<Ts...>;      template <typename... Args>      static typename M::iterator Insert(M* m, Args&&... args) {        return m->emplace(std::make_pair(std::forward<Args>(args)...)).first;      }    };    template <typename... Ts>    struct Inserter<std::multimap<Ts...>> {      using M = std::multimap<Ts...>;      template <typename... Args>      static typename M::iterator Insert(M* m, Args&&... args) {        return m->emplace(std::make_pair(std::forward<Args>(args)...));      }    };  };  ConvertibleToStringView text_;  Delimiter delimiter_;  Predicate predicate_;};}  // namespace strings_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_STRINGS_INTERNAL_STR_SPLIT_INTERNAL_H_
 |