| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// mutex.h// -----------------------------------------------------------------------------//// This header file defines a `Mutex` -- a mutually exclusive lock -- and the// most common type of synchronization primitive for facilitating locks on// shared resources. A mutex is used to prevent multiple threads from accessing// and/or writing to a shared resource concurrently.//// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional// features://   * Conditional predicates intrinsic to the `Mutex` object//   * Reader/writer locks, in addition to standard exclusive/writer locks//   * Deadlock detection and debug support.//// The following helper classes are also defined within this file:////  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive///              write access within the current scope.//  ReaderMutexLock//            - An RAII wrapper to acquire and release a `Mutex` for shared/read//              access within the current scope.////  WriterMutexLock//            - Alias for `MutexLock` above, designed for use in distinguishing//              reader and writer locks within code.//// In addition to simple mutex locks, this file also defines ways to perform// locking under certain conditions.////  Condition   - (Preferred) Used to wait for a particular predicate that//                depends on state protected by the `Mutex` to become true.//  CondVar     - A lower-level variant of `Condition` that relies on//                application code to explicitly signal the `CondVar` when//                a condition has been met.//// See below for more information on using `Condition` or `CondVar`.//// Mutexes and mutex behavior can be quite complicated. The information within// this header file is limited, as a result. Please consult the Mutex guide for// more complete information and examples.#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_#define ABSL_SYNCHRONIZATION_MUTEX_H_#include <atomic>#include <cstdint>#include <string>#include "absl/base/internal/identity.h"#include "absl/base/internal/low_level_alloc.h"#include "absl/base/internal/thread_identity.h"#include "absl/base/port.h"#include "absl/base/thread_annotations.h"#include "absl/synchronization/internal/kernel_timeout.h"#include "absl/synchronization/internal/per_thread_sem.h"#include "absl/time/time.h"// Decide if we should use the non-production implementation because// the production implementation hasn't been fully ported yet.#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX#error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set#elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)#define ABSL_INTERNAL_USE_NONPROD_MUTEX 1#include "absl/synchronization/internal/mutex_nonprod.inc"#endifnamespace absl {class Condition;struct SynchWaitParams;// -----------------------------------------------------------------------------// Mutex// -----------------------------------------------------------------------------//// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock// on some resource, typically a variable or data structure with associated// invariants. Proper usage of mutexes prevents concurrent access by different// threads to the same resource.//// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.// The `Lock()` operation *acquires* a `Mutex` (in a state known as an// *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a// Mutex. During the span of time between the Lock() and Unlock() operations,// a mutex is said to be *held*. By design all mutexes support exclusive/write// locks, as this is the most common way to use a mutex.//// The `Mutex` state machine for basic lock/unlock operations is quite simple://// |                | Lock()     | Unlock() |// |----------------+------------+----------|// | Free           | Exclusive  | invalid  |// | Exclusive      | blocks     | Free     |//// Attempts to `Unlock()` must originate from the thread that performed the// corresponding `Lock()` operation.//// An "invalid" operation is disallowed by the API. The `Mutex` implementation// is allowed to do anything on an invalid call, including but not limited to// crashing with a useful error message, silently succeeding, or corrupting// data structures. In debug mode, the implementation attempts to crash with a// useful error message.//// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it// is, however, approximately fair over long periods, and starvation-free for// threads at the same priority.//// The lock/unlock primitives are now annotated with lock annotations// defined in (base/thread_annotations.h). When writing multi-threaded code,// you should use lock annotations whenever possible to document your lock// synchronization policy. Besides acting as documentation, these annotations// also help compilers or static analysis tools to identify and warn about// issues that could potentially result in race conditions and deadlocks.//// For more information about the lock annotations, please see// [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)// in the Clang documentation.//// See also `MutexLock`, below, for scoped `Mutex` acquisition.class LOCKABLE Mutex { public:  Mutex();  ~Mutex();  // Mutex::Lock()  //  // Blocks the calling thread, if necessary, until this `Mutex` is free, and  // then acquires it exclusively. (This lock is also known as a "write lock.")  void Lock() EXCLUSIVE_LOCK_FUNCTION();  // Mutex::Unlock()  //  // Releases this `Mutex` and returns it from the exclusive/write state to the  // free state. Caller must hold the `Mutex` exclusively.  void Unlock() UNLOCK_FUNCTION();  // Mutex::TryLock()  //  // If the mutex can be acquired without blocking, does so exclusively and  // returns `true`. Otherwise, returns `false`. Returns `true` with high  // probability if the `Mutex` was free.  bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);  // Mutex::AssertHeld()  //  // Return immediately if this thread holds the `Mutex` exclusively (in write  // mode). Otherwise, may report an error (typically by crashing with a  // diagnostic), or may return immediately.  void AssertHeld() const ASSERT_EXCLUSIVE_LOCK();  // ---------------------------------------------------------------------------  // Reader-Writer Locking  // ---------------------------------------------------------------------------  // A Mutex can also be used as a starvation-free reader-writer lock.  // Neither read-locks nor write-locks are reentrant/recursive to avoid  // potential client programming errors.  //  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,  // `Unlock()` and `TryLock()` methods for use within applications mixing  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this  // manner can make locking behavior clearer when mixing read and write modes.  //  // Introducing reader locks necessarily complicates the `Mutex` state  // machine somewhat. The table below illustrates the allowed state transitions  // of a mutex in such cases. Note that ReaderLock() may block even if the lock  // is held in shared mode; this occurs when another thread is blocked on a  // call to WriterLock().  //  // ---------------------------------------------------------------------------  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()  // ---------------------------------------------------------------------------  // State  // ---------------------------------------------------------------------------  // Free           Exclusive    invalid   Shared(1)              invalid  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)  // Exclusive      blocks       Free      blocks                 invalid  // ---------------------------------------------------------------------------  //  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.  // Mutex::ReaderLock()  //  // Blocks the calling thread, if necessary, until this `Mutex` is either free,  // or in shared mode, and then acquires a share of it. Note that  // `ReaderLock()` will block if some other thread has an exclusive/writer lock  // on the mutex.  void ReaderLock() SHARED_LOCK_FUNCTION();  // Mutex::ReaderUnlock()  //  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to  // the free state if this thread holds the last reader lock on the mutex. Note  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.  void ReaderUnlock() UNLOCK_FUNCTION();  // Mutex::ReaderTryLock()  //  // If the mutex can be acquired without blocking, acquires this mutex for  // shared access and returns `true`. Otherwise, returns `false`. Returns  // `true` with high probability if the `Mutex` was free or shared.  bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true);  // Mutex::AssertReaderHeld()  //  // Returns immediately if this thread holds the `Mutex` in at least shared  // mode (read mode). Otherwise, may report an error (typically by  // crashing with a diagnostic), or may return immediately.  void AssertReaderHeld() const ASSERT_SHARED_LOCK();  // Mutex::WriterLock()  // Mutex::WriterUnlock()  // Mutex::WriterTryLock()  //  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.  //  // Use the `Writer*()` versions of these method names when using complementary  // `Reader*()` methods to distingish simple exclusive `Mutex` usage (`Lock()`,  // etc.) from reader/writer lock usage.  void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }  void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); }  bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) {    return this->TryLock();  }  // ---------------------------------------------------------------------------  // Conditional Critical Regions  // ---------------------------------------------------------------------------  // Conditional usage of a `Mutex` can occur using two distinct paradigms:  //  //   * Use of `Mutex` member functions with `Condition` objects.  //   * Use of the separate `CondVar` abstraction.  //  // In general, prefer use of `Condition` and the `Mutex` member functions  // listed below over `CondVar`. When there are multiple threads waiting on  // distinctly different conditions, however, a battery of `CondVar`s may be  // more efficient. This section discusses use of `Condition` objects.  //  // `Mutex` contains member functions for performing lock operations only under  // certain conditions, of class `Condition`. For correctness, the `Condition`  // must return a boolean that is a pure function, only of state protected by  // the `Mutex`. The condition must be invariant w.r.t. environmental state  // such as thread, cpu id, or time, and must be `noexcept`. The condition will  // always be invoked with the mutex held in at least read mode, so you should  // not block it for long periods or sleep it on a timer.  //  // Since a condition must not depend directly on the current time, use  // `*WithTimeout()` member function variants to make your condition  // effectively true after a given duration, or `*WithDeadline()` variants to  // make your condition effectively true after a given time.  //  // The condition function should have no side-effects aside from debug  // logging; as a special exception, the function may acquire other mutexes  // provided it releases all those that it acquires.  (This exception was  // required to allow logging.)  // Mutex::Await()  //  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the  // same mode in which it was previously held. If the condition is initially  // `true`, `Await()` *may* skip the release/re-acquire step.  //  // `Await()` requires that this thread holds this `Mutex` in some mode.  void Await(const Condition &cond);  // Mutex::LockWhen()  // Mutex::ReaderLockWhen()  // Mutex::WriterLockWhen()  //  // Blocks until simultaneously both `cond` is `true` and this` Mutex` can  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is  // logically equivalent to `*Lock(); Await();` though they may have different  // performance characteristics.  void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION();  void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION();  void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() {    this->LockWhen(cond);  }  // ---------------------------------------------------------------------------  // Mutex Variants with Timeouts/Deadlines  // ---------------------------------------------------------------------------  // Mutex::AwaitWithTimeout()  // Mutex::AwaitWithDeadline()  //  // If `cond` is initially true, do nothing, or act as though `cond` is  // initially false.  //  // If `cond` is initially false, unlock this `Mutex` and block until  // simultaneously:  //   - either `cond` is true or the {timeout has expired, deadline has passed}  //     and  //   - this `Mutex` can be reacquired,  // then reacquire this `Mutex` in the same mode in which it was previously  // held, returning `true` iff `cond` is `true` on return.  //  // Deadlines in the past are equivalent to an immediate deadline.  // Negative timeouts are equivalent to a zero timeout.  //  // This method requires that this thread holds this `Mutex` in some mode.  bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);  bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);  // Mutex::LockWhenWithTimeout()  // Mutex::ReaderLockWhenWithTimeout()  // Mutex::WriterLockWhenWithTimeout()  //  // Blocks until simultaneously both:  //   - either `cond` is `true` or the timeout has expired, and  //   - this `Mutex` can be acquired,  // then atomically acquires this `Mutex`, returning `true` iff `cond` is  // `true` on return.  //  // Negative timeouts are equivalent to a zero timeout.  bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)      EXCLUSIVE_LOCK_FUNCTION();  bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)      SHARED_LOCK_FUNCTION();  bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)      EXCLUSIVE_LOCK_FUNCTION() {    return this->LockWhenWithTimeout(cond, timeout);  }  // Mutex::LockWhenWithDeadline()  // Mutex::ReaderLockWhenWithDeadline()  // Mutex::WriterLockWhenWithDeadline()  //  // Blocks until simultaneously both:  //   - either `cond` is `true` or the deadline has been passed, and  //   - this `Mutex` can be acquired,  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`  // on return.  //  // Deadlines in the past are equivalent to an immediate deadline.  bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)      EXCLUSIVE_LOCK_FUNCTION();  bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)      SHARED_LOCK_FUNCTION();  bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)      EXCLUSIVE_LOCK_FUNCTION() {    return this->LockWhenWithDeadline(cond, deadline);  }  // ---------------------------------------------------------------------------  // Debug Support: Invariant Checking, Deadlock Detection, Logging.  // ---------------------------------------------------------------------------  // Mutex::EnableInvariantDebugging()  //  // If `invariant`!=null and if invariant debugging has been enabled globally,  // cause `(*invariant)(arg)` to be called at moments when the invariant for  // this `Mutex` should hold (for example: just after acquire, just before  // release).  //  // The routine `invariant` should have no side-effects since it is not  // guaranteed how many times it will be called; it should check the invariant  // and crash if it does not hold. Enabling global invariant debugging may  // substantially reduce `Mutex` performance; it should be set only for  // non-production runs.  Optimization options may also disable invariant  // checks.  void EnableInvariantDebugging(void (*invariant)(void *), void *arg);  // Mutex::EnableDebugLog()  //  // Cause all subsequent uses of this `Mutex` to be logged via  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.  //  // Note: This method substantially reduces `Mutex` performance.  void EnableDebugLog(const char *name);  // Deadlock detection  // Mutex::ForgetDeadlockInfo()  //  // Forget any deadlock-detection information previously gathered  // about this `Mutex`. Call this method in debug mode when the lock ordering  // of a `Mutex` changes.  void ForgetDeadlockInfo();  // Mutex::AssertNotHeld()  //  // Return immediately if this thread does not hold this `Mutex` in any  // mode; otherwise, may report an error (typically by crashing with a  // diagnostic), or may return immediately.  //  // Currently this check is performed only if all of:  //    - in debug mode  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort  //    - number of locks concurrently held by this thread is not large.  // are true.  void AssertNotHeld() const;  // Special cases.  // A `MuHow` is a constant that indicates how a lock should be acquired.  // Internal implementation detail.  Clients should ignore.  typedef const struct MuHowS *MuHow;  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()  //  // Causes the `Mutex` implementation to prepare itself for re-entry caused by  // future use of `Mutex` within a fatal signal handler. This method is  // intended for use only for last-ditch attempts to log crash information.  // It does not guarantee that attempts to use Mutexes within the handler will  // not deadlock; it merely makes other faults less likely.  //  // WARNING:  This routine must be invoked from a signal handler, and the  // signal handler must either loop forever or terminate the process.  // Attempts to return from (or `longjmp` out of) the signal handler once this  // call has been made may cause arbitrary program behaviour including  // crashes and deadlocks.  static void InternalAttemptToUseMutexInFatalSignalHandler(); private:#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX  friend class CondVar;  synchronization_internal::MutexImpl *impl() { return impl_.get(); }  synchronization_internal::SynchronizationStorage<      synchronization_internal::MutexImpl>      impl_;#else  std::atomic<intptr_t> mu_;  // The Mutex state.  // Post()/Wait() versus associated PerThreadSem; in class for required  // friendship with PerThreadSem.  static inline void IncrementSynchSem(Mutex *mu,                                       base_internal::PerThreadSynch *w);  static inline bool DecrementSynchSem(      Mutex *mu, base_internal::PerThreadSynch *w,      synchronization_internal::KernelTimeout t);  // slow path acquire  void LockSlowLoop(SynchWaitParams *waitp, int flags);  // wrappers around LockSlowLoop()  bool LockSlowWithDeadline(MuHow how, const Condition *cond,                            synchronization_internal::KernelTimeout t,                            int flags);  void LockSlow(MuHow how, const Condition *cond,                int flags) ABSL_ATTRIBUTE_COLD;  // slow path release  void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;  // Common code between Await() and AwaitWithTimeout/Deadline()  bool AwaitCommon(const Condition &cond,                   synchronization_internal::KernelTimeout t);  // Attempt to remove thread s from queue.  void TryRemove(base_internal::PerThreadSynch *s);  // Block a thread on mutex.  void Block(base_internal::PerThreadSynch *s);  // Wake a thread; return successor.  base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);  friend class CondVar;   // for access to Trans()/Fer().  void Trans(MuHow how);  // used for CondVar->Mutex transfer  void Fer(      base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer#endif  // Catch the error of writing Mutex when intending MutexLock.  Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)  Mutex(const Mutex&) = delete;  Mutex& operator=(const Mutex&) = delete;};// -----------------------------------------------------------------------------// Mutex RAII Wrappers// -----------------------------------------------------------------------------// MutexLock//// `MutexLock` is a helper class, which acquires and releases a `Mutex` via// RAII.//// Example://// Class Foo {////   Foo::Bar* Baz() {//     MutexLock l(&lock_);//     ...//     return bar;//   }//// private://   Mutex lock_;// };class SCOPED_LOCKABLE MutexLock { public:  explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {    this->mu_->Lock();  }  ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); } private:  Mutex *const mu_;  MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)  MutexLock& operator=(const MutexLock&) = delete;};// ReaderMutexLock//// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and// releases a shared lock on a `Mutex` via RAII.class SCOPED_LOCKABLE ReaderMutexLock { public:  explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu)      :  mu_(mu) {    mu->ReaderLock();  }  ~ReaderMutexLock() UNLOCK_FUNCTION() {    this->mu_->ReaderUnlock();  } private:  Mutex *const mu_;  ReaderMutexLock(const ReaderMutexLock&) = delete;  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;};// WriterMutexLock//// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and// releases a write (exclusive) lock on a `Mutex` va RAII.class SCOPED_LOCKABLE WriterMutexLock { public:  explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)      : mu_(mu) {    mu->WriterLock();  }  ~WriterMutexLock() UNLOCK_FUNCTION() {    this->mu_->WriterUnlock();  } private:  Mutex *const mu_;  WriterMutexLock(const WriterMutexLock&) = delete;  WriterMutexLock& operator=(const WriterMutexLock&) = delete;};// -----------------------------------------------------------------------------// Condition// -----------------------------------------------------------------------------//// As noted above, `Mutex` contains a number of member functions which take a// `Condition` as a argument; clients can wait for conditions to become `true`// before attempting to acquire the mutex. These sections are known as// "condition critical" sections. To use a `Condition`, you simply need to// construct it, and use within an appropriate `Mutex` member function;// everything else in the `Condition` class is an implementation detail.//// A `Condition` is specified as a function pointer which returns a boolean.// `Condition` functions should be pure functions -- their results should depend// only on passed arguments, should not consult any external state (such as// clocks), and should have no side-effects, aside from debug logging. Any// objects that the function may access should be limited to those which are// constant while the mutex is blocked on the condition (e.g. a stack variable),// or objects of state protected explicitly by the mutex.//// No matter which construction is used for `Condition`, the underlying// function pointer / functor / callable must not throw any// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in// the face of a throwing `Condition`. (When Abseil is allowed to depend// on C++17, these function pointers will be explicitly marked// `noexcept`; until then this requirement cannot be enforced in the// type system.)//// Note: to use a `Condition`, you need only construct it and pass it within the// appropriate `Mutex' member function, such as `Mutex::Await()`.//// Example:////   // assume count_ is not internal reference count//   int count_ GUARDED_BY(mu_);////   mu_.LockWhen(Condition(+[](const int* count) { return *count == 0; },//         &count_));//// When multiple threads are waiting on exactly the same condition, make sure// that they are constructed with the same parameters (same pointer to function// + arg, or same pointer to object + method), so that the mutex implementation// can avoid redundantly evaluating the same condition for each thread.class Condition { public:  // A Condition that returns the result of "(*func)(arg)"  Condition(bool (*func)(void *), void *arg);  // Templated version for people who are averse to casts.  //  // To use a lambda, prepend it with unary plus, which converts the lambda  // into a function pointer:  //     Condition(+[](T* t) { return ...; }, arg).  //  // Note: lambdas in this case must contain no bound variables.  //  // See class comment for performance advice.  template<typename T>  Condition(bool (*func)(T *), T *arg);  // Templated version for invoking a method that returns a `bool`.  //  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates  // `object->Method()`.  //  // Implementation Note: `absl::internal::identity` is used to allow methods to  // come from base classes. A simpler signature like  // `Condition(T*, bool (T::*)())` does not suffice.  template<typename T>  Condition(T *object, bool (absl::internal::identity<T>::type::* method)());  // Same as above, for const members  template<typename T>  Condition(const T *object,            bool (absl::internal::identity<T>::type::* method)() const);  // A Condition that returns the value of `*cond`  explicit Condition(const bool *cond);  // Templated version for invoking a functor that returns a `bool`.  // This approach accepts pointers to non-mutable lambdas, `std::function`,  // the result of` std::bind` and user-defined functors that define  // `bool F::operator()() const`.  //  // Example:  //  //   auto reached = [this, current]() {  //     mu_.AssertReaderHeld();                // For annotalysis.  //     return processed_ >= current;  //   };  //   mu_.Await(Condition(&reached));  // See class comment for performance advice. In particular, if there  // might be more than one waiter for the same condition, make sure  // that all waiters construct the condition with the same pointers.  // Implementation note: The second template parameter ensures that this  // constructor doesn't participate in overload resolution if T doesn't have  // `bool operator() const`.  template <typename T, typename E = decltype(      static_cast<bool (T::*)() const>(&T::operator()))>  explicit Condition(const T *obj)      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}  // A Condition that always returns `true`.  static const Condition kTrue;  // Evaluates the condition.  bool Eval() const;  // Returns `true` if the two conditions are guaranteed to return the same  // value if evaluated at the same time, `false` if the evaluation *may* return  // different results.  //  // Two `Condition` values are guaranteed equal if both their `func` and `arg`  // components are the same. A null pointer is equivalent to a `true`  // condition.  static bool GuaranteedEqual(const Condition *a, const Condition *b); private:  typedef bool (*InternalFunctionType)(void * arg);  typedef bool (Condition::*InternalMethodType)();  typedef bool (*InternalMethodCallerType)(void * arg,                                           InternalMethodType internal_method);  bool (*eval_)(const Condition*);  // Actual evaluator  InternalFunctionType function_;   // function taking pointer returning bool  InternalMethodType method_;       // method returning bool  void *arg_;                       // arg of function_ or object of method_  Condition();        // null constructor used only to create kTrue  // Various functions eval_ can point to:  static bool CallVoidPtrFunction(const Condition*);  template <typename T> static bool CastAndCallFunction(const Condition* c);  template <typename T> static bool CastAndCallMethod(const Condition* c);};// -----------------------------------------------------------------------------// CondVar// -----------------------------------------------------------------------------//// A condition variable, reflecting state evaluated separately outside of the// `Mutex` object, which can be signaled to wake callers.// This class is not normally needed; use `Mutex` member functions such as// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases// with many threads and many conditions, `CondVar` may be faster.//// The implementation may deliver signals to any condition variable at// any time, even when no call to `Signal()` or `SignalAll()` is made; as a// result, upon being awoken, you must check the logical condition you have// been waiting upon. The implementation wakes waiters in the FIFO order.//// Examples://// Usage for a thread waiting for some condition C protected by mutex mu://       mu.Lock();//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu//       //  C holds; process data//       mu.Unlock();//// Usage to wake T is://       mu.Lock();//      // process data, possibly establishing C//      if (C) { cv->Signal(); }//      mu.Unlock();//// If C may be useful to more than one waiter, use `SignalAll()` instead of// `Signal()`.//// With this implementation it is efficient to use `Signal()/SignalAll()` inside// the locked region; this usage can make reasoning about your program easier.//class CondVar { public:  CondVar();  ~CondVar();  // CondVar::Wait()  //  // Atomically releases a `Mutex` and blocks on this condition variable. After  // blocking, the thread will unblock, reacquire the `Mutex`, and return if  // either:  //  - this condition variable is signalled with `SignalAll()`, or  //  - this condition variable is signalled in any manner and this thread  //    was the most recently blocked thread that has not yet woken.  // Requires and ensures that the current thread holds the `Mutex`.  void Wait(Mutex *mu);  // CondVar::WaitWithTimeout()  //  // Atomically releases a `Mutex`, blocks on this condition variable, and  // attempts to reacquire the mutex upon being signalled, or upon reaching the  // timeout.  //  // After blocking, the thread will unblock, reacquire the `Mutex`, and return  // for any of the following:  //  - this condition variable is signalled with `SignalAll()`  //  - the timeout has expired  //  - this condition variable is signalled in any manner and this thread  //    was the most recently blocked thread that has not yet woken.  //  // Negative timeouts are equivalent to a zero timeout.  //  // Returns true if the timeout has expired without this `CondVar`  // being signalled in any manner. If both the timeout has expired  // and this `CondVar` has been signalled, the implementation is free  // to return `true` or `false`.  //  // Requires and ensures that the current thread holds the `Mutex`.  bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);  // CondVar::WaitWithDeadline()  //  // Atomically releases a `Mutex`, blocks on this condition variable, and  // attempts to reacquire the mutex within the provided deadline.  //  // After blocking, the thread will unblock, reacquire the `Mutex`, and return  // for any of the following:  //  - this condition variable is signalled with `SignalAll()`  //  - the deadline has passed  //  - this condition variable is signalled in any manner and this thread  //    was the most recently blocked thread that has not yet woken.  //  // Deadlines in the past are equivalent to an immediate deadline.  //  // Returns true if the deadline has passed without this `CondVar`  // being signalled in any manner. If both the deadline has passed  // and this `CondVar` has been signalled, the implementation is free  // to return `true` or `false`.  //  // Requires and ensures that the current thread holds the `Mutex`.  bool WaitWithDeadline(Mutex *mu, absl::Time deadline);  // CondVar::Signal()  //  // Signal this `CondVar`; wake at least one waiter if one exists.  void Signal();  // CondVar::SignalAll()  //  // Signal this `CondVar`; wake all waiters.  void SignalAll();  // CondVar::EnableDebugLog()  //  // Causes all subsequent uses of this `CondVar` to be logged via  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.  // Note: this method substantially reduces `CondVar` performance.  void EnableDebugLog(const char *name); private:#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX  synchronization_internal::CondVarImpl *impl() { return impl_.get(); }  synchronization_internal::SynchronizationStorage<      synchronization_internal::CondVarImpl>      impl_;#else  bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);  void Remove(base_internal::PerThreadSynch *s);  void Wakeup(base_internal::PerThreadSynch *w);  std::atomic<intptr_t> cv_;  // Condition variable state.#endif  CondVar(const CondVar&) = delete;  CondVar& operator=(const CondVar&) = delete;};// Variants of MutexLock.//// If you find yourself using one of these, consider instead using// Mutex::Unlock() and/or if-statements for clarity.// MutexLockMaybe//// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.class SCOPED_LOCKABLE MutexLockMaybe { public:  explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)      : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } }  ~MutexLockMaybe() UNLOCK_FUNCTION() {    if (this->mu_ != nullptr) { this->mu_->Unlock(); }  } private:  Mutex *const mu_;  MutexLockMaybe(const MutexLockMaybe&) = delete;  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;};// ReleaseableMutexLock//// ReleasableMutexLock is like MutexLock, but permits `Release()` of its// mutex before destruction. `Release()` may be called at most once.class SCOPED_LOCKABLE ReleasableMutexLock { public:  explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)      : mu_(mu) {    this->mu_->Lock();  }  ~ReleasableMutexLock() UNLOCK_FUNCTION() {    if (this->mu_ != nullptr) { this->mu_->Unlock(); }  }  void Release() UNLOCK_FUNCTION(); private:  Mutex *mu_;  ReleasableMutexLock(const ReleasableMutexLock&) = delete;  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;};#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX#elseinline CondVar::CondVar() : cv_(0) {}#endif// statictemplate <typename T>bool Condition::CastAndCallMethod(const Condition *c) {  typedef bool (T::*MemberType)();  MemberType rm = reinterpret_cast<MemberType>(c->method_);  T *x = static_cast<T *>(c->arg_);  return (x->*rm)();}// statictemplate <typename T>bool Condition::CastAndCallFunction(const Condition *c) {  typedef bool (*FuncType)(T *);  FuncType fn = reinterpret_cast<FuncType>(c->function_);  T *x = static_cast<T *>(c->arg_);  return (*fn)(x);}template <typename T>inline Condition::Condition(bool (*func)(T *), T *arg)    : eval_(&CastAndCallFunction<T>),      function_(reinterpret_cast<InternalFunctionType>(func)),      method_(nullptr),      arg_(const_cast<void *>(static_cast<const void *>(arg))) {}template <typename T>inline Condition::Condition(T *object,                            bool (absl::internal::identity<T>::type::*method)())    : eval_(&CastAndCallMethod<T>),      function_(nullptr),      method_(reinterpret_cast<InternalMethodType>(method)),      arg_(object) {}template <typename T>inline Condition::Condition(const T *object,                            bool (absl::internal::identity<T>::type::*method)()                                const)    : eval_(&CastAndCallMethod<T>),      function_(nullptr),      method_(reinterpret_cast<InternalMethodType>(method)),      arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}// Register a hook for profiling support.//// The function pointer registered here will be called whenever a mutex is// contended.  The callback is given the absl/base/cycleclock.h timestamp when// waiting began.//// Calls to this function do not race or block, but there is no ordering// guaranteed between calls to this function and call to the provided hook.// In particular, the previously registered hook may still be called for some// time after this function returns.void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));// Register a hook for Mutex tracing.//// The function pointer registered here will be called whenever a mutex is// contended.  The callback is given an opaque handle to the contended mutex,// an event name, and the number of wait cycles (as measured by// //absl/base/internal/cycleclock.h, and which may not be real// "cycle" counts.)//// The only event name currently sent is "slow release".//// This has the same memory ordering concerns as RegisterMutexProfiler() above.void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,                              int64_t wait_cycles));// TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()// into a single interface, since they are only ever called in pairs.// Register a hook for CondVar tracing.//// The function pointer registered here will be called here on various CondVar// events.  The callback is given an opaque handle to the CondVar object and// a std::string identifying the event.  This is thread-safe, but only a single// tracer can be registered.//// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and// "SignalAll wakeup".//// This has the same memory ordering concerns as RegisterMutexProfiler() above.void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));// Register a hook for symbolizing stack traces in deadlock detector reports.//// 'pc' is the program counter being symbolized, 'out' is the buffer to write// into, and 'out_size' is the size of the buffer.  This function can return// false if symbolizing failed, or true if a null-terminated symbol was written// to 'out.'//// This has the same memory ordering concerns as RegisterMutexProfiler() above.void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));// EnableMutexInvariantDebugging()//// Enable or disable global support for Mutex invariant debugging.  If enabled,// then invariant predicates can be registered per-Mutex for debug checking.// See Mutex::EnableInvariantDebugging().void EnableMutexInvariantDebugging(bool enabled);// When in debug mode, and when the feature has been enabled globally, the// implementation will keep track of lock ordering and complain (or optionally// crash) if a cycle is detected in the acquired-before graph.// Possible modes of operation for the deadlock detector in debug mode.enum class OnDeadlockCycle {  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering  kReport,  // Report lock cycles to stderr when detected  kAbort,  // Report lock cycles to stderr when detected, then abort};// SetMutexDeadlockDetectionMode()//// Enable or disable global support for detection of potential deadlocks// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph// will be maintained internally, and detected cycles will be reported in// the manner chosen here.void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);}  // namespace absl// In some build configurations we pass --detect-odr-violations to the// gold linker.  This causes it to flag weak symbol overrides as ODR// violations.  Because ODR only applies to C++ and not C,// --detect-odr-violations ignores symbols not mangled with C++ names.// By changing our extension points to be extern "C", we dodge this// check.extern "C" {void AbslInternalMutexYield();}  // extern "C"#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
 |