| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 | #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_// Generate stack tracer for aarch64#if defined(__linux__)#include <sys/mman.h>#include <ucontext.h>#include <unistd.h>#endif#include <atomic>#include <cassert>#include <cstdint>#include <iostream>#include "absl/base/attributes.h"#include "absl/debugging/internal/address_is_readable.h"#include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems#include "absl/debugging/stacktrace.h"static const uintptr_t kUnknownFrameSize = 0;#if defined(__linux__)// Returns the address of the VDSO __kernel_rt_sigreturn function, if present.static const unsigned char* GetKernelRtSigreturnAddress() {  constexpr uintptr_t kImpossibleAddress = 1;  ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress};  uintptr_t address = memoized.load(std::memory_order_relaxed);  if (address != kImpossibleAddress) {    return reinterpret_cast<const unsigned char*>(address);  }  address = reinterpret_cast<uintptr_t>(nullptr);#ifdef ABSL_HAVE_VDSO_SUPPORT  absl::debugging_internal::VDSOSupport vdso;  if (vdso.IsPresent()) {    absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;    if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", STT_FUNC,                           &symbol_info) ||        symbol_info.address == nullptr) {      // Unexpected: VDSO is present, yet the expected symbol is missing      // or null.      assert(false && "VDSO is present, but doesn't have expected symbol");    } else {      if (reinterpret_cast<uintptr_t>(symbol_info.address) !=          kImpossibleAddress) {        address = reinterpret_cast<uintptr_t>(symbol_info.address);      } else {        assert(false && "VDSO returned invalid address");      }    }  }#endif  memoized.store(address, std::memory_order_relaxed);  return reinterpret_cast<const unsigned char*>(address);}#endif  // __linux__// Compute the size of a stack frame in [low..high).  We assume that// low < high.  Return size of kUnknownFrameSize.template<typename T>static inline uintptr_t ComputeStackFrameSize(const T* low,                                              const T* high) {  const char* low_char_ptr = reinterpret_cast<const char *>(low);  const char* high_char_ptr = reinterpret_cast<const char *>(high);  return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize;}// Given a pointer to a stack frame, locate and return the calling// stackframe, or return null if no stackframe can be found. Perform sanity// checks (the strictness of which is controlled by the boolean parameter// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.template<bool STRICT_UNWINDING, bool WITH_CONTEXT>static void **NextStackFrame(void **old_frame_pointer, const void *uc) {  void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);  bool check_frame_size = true;#if defined(__linux__)  if (WITH_CONTEXT && uc != nullptr) {    // Check to see if next frame's return address is __kernel_rt_sigreturn.    if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {      const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);      // old_frame_pointer[0] is not suitable for unwinding, look at      // ucontext to discover frame pointer before signal.      void **const pre_signal_frame_pointer =          reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);      // Check that alleged frame pointer is actually readable. This is to      // prevent "double fault" in case we hit the first fault due to e.g.      // stack corruption.      if (!absl::debugging_internal::AddressIsReadable(              pre_signal_frame_pointer))        return nullptr;      // Alleged frame pointer is readable, use it for further unwinding.      new_frame_pointer = pre_signal_frame_pointer;      // Skip frame size check if we return from a signal. We may be using a      // an alternate stack for signals.      check_frame_size = false;    }  }#endif  // aarch64 ABI requires stack pointer to be 16-byte-aligned.  if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0)    return nullptr;  // Check frame size.  In strict mode, we assume frames to be under  // 100,000 bytes.  In non-strict mode, we relax the limit to 1MB.  if (check_frame_size) {    const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000;    const uintptr_t frame_size =        ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);    if (frame_size == kUnknownFrameSize || frame_size > max_size)      return nullptr;  }  return new_frame_pointer;}template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,                      const void *ucp, int *min_dropped_frames) {#ifdef __GNUC__  void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));#else# error reading stack point not yet supported on this platform.#endif  skip_count++;    // Skip the frame for this function.  int n = 0;  // The frame pointer points to low address of a frame.  The first 64-bit  // word of a frame points to the next frame up the call chain, which normally  // is just after the high address of the current frame.  The second word of  // a frame contains return adress of to the caller.   To find a pc value  // associated with the current frame, we need to go down a level in the call  // chain.  So we remember return the address of the last frame seen.  This  // does not work for the first stack frame, which belongs to UnwindImp() but  // we skip the frame for UnwindImp() anyway.  void* prev_return_address = nullptr;  while (frame_pointer && n < max_depth) {    // The absl::GetStackFrames routine is called when we are in some    // informational context (the failure signal handler for example).    // Use the non-strict unwinding rules to produce a stack trace    // that is as complete as possible (even if it contains a few bogus    // entries in some rare cases).    void **next_frame_pointer =        NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);    if (skip_count > 0) {      skip_count--;    } else {      result[n] = prev_return_address;      if (IS_STACK_FRAMES) {        sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer);      }      n++;    }    prev_return_address = frame_pointer[1];    frame_pointer = next_frame_pointer;  }  if (min_dropped_frames != nullptr) {    // Implementation detail: we clamp the max of frames we are willing to    // count, so as not to spend too much time in the loop below.    const int kMaxUnwind = 200;    int j = 0;    for (; frame_pointer != nullptr && j < kMaxUnwind; j++) {      frame_pointer =          NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);    }    *min_dropped_frames = j;  }  return n;}namespace absl {ABSL_NAMESPACE_BEGINnamespace debugging_internal {bool StackTraceWorksForTest() {  return true;}}  // namespace debugging_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
 |