| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493 | 
							- // Copyright 2018 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- //
 
- // -----------------------------------------------------------------------------
 
- // File: node_hash_set.h
 
- // -----------------------------------------------------------------------------
 
- //
 
- // An `absl::node_hash_set<T>` is an unordered associative container designed to
 
- // be a more efficient replacement for `std::unordered_set`. Like
 
- // `unordered_set`, search, insertion, and deletion of map elements can be done
 
- // as an `O(1)` operation. However, `node_hash_set` (and other unordered
 
- // associative containers known as the collection of Abseil "Swiss tables")
 
- // contain other optimizations that result in both memory and computation
 
- // advantages.
 
- //
 
- // In most cases, your default choice for a hash table should be a map of type
 
- // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
 
- // pointer stability, a `node_hash_set` should be your preferred choice. As
 
- // well, if you are migrating your code from using `std::unordered_set`, a
 
- // `node_hash_set` should be an easy migration. Consider migrating to
 
- // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
 
- // upon further review.
 
- #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
 
- #define ABSL_CONTAINER_NODE_HASH_SET_H_
 
- #include <type_traits>
 
- #include "absl/algorithm/container.h"
 
- #include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
 
- #include "absl/container/internal/node_hash_policy.h"
 
- #include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
 
- #include "absl/memory/memory.h"
 
- namespace absl {
 
- ABSL_NAMESPACE_BEGIN
 
- namespace container_internal {
 
- template <typename T>
 
- struct NodeHashSetPolicy;
 
- }  // namespace container_internal
 
- // -----------------------------------------------------------------------------
 
- // absl::node_hash_set
 
- // -----------------------------------------------------------------------------
 
- //
 
- // An `absl::node_hash_set<T>` is an unordered associative container which
 
- // has been optimized for both speed and memory footprint in most common use
 
- // cases. Its interface is similar to that of `std::unordered_set<T>` with the
 
- // following notable differences:
 
- //
 
- // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
 
- //   `insert()`, provided that the map is provided a compatible heterogeneous
 
- //   hashing function and equality operator.
 
- // * Contains a `capacity()` member function indicating the number of element
 
- //   slots (open, deleted, and empty) within the hash set.
 
- // * Returns `void` from the `erase(iterator)` overload.
 
- //
 
- // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
 
- // All fundamental and Abseil types that support the `absl::Hash` framework have
 
- // a compatible equality operator for comparing insertions into `node_hash_set`.
 
- // If your type is not yet supported by the `absl::Hash` framework, see
 
- // absl/hash/hash.h for information on extending Abseil hashing to user-defined
 
- // types.
 
- //
 
- // Example:
 
- //
 
- //   // Create a node hash set of three strings
 
- //   absl::node_hash_map<std::string, std::string> ducks =
 
- //     {"huey", "dewey", "louie"};
 
- //
 
- //  // Insert a new element into the node hash map
 
- //  ducks.insert("donald"};
 
- //
 
- //  // Force a rehash of the node hash map
 
- //  ducks.rehash(0);
 
- //
 
- //  // See if "dewey" is present
 
- //  if (ducks.contains("dewey")) {
 
- //    std::cout << "We found dewey!" << std::endl;
 
- //  }
 
- template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
 
-           class Eq = absl::container_internal::hash_default_eq<T>,
 
-           class Alloc = std::allocator<T>>
 
- class node_hash_set
 
-     : public absl::container_internal::raw_hash_set<
 
-           absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
 
-   using Base = typename node_hash_set::raw_hash_set;
 
-  public:
 
-   // Constructors and Assignment Operators
 
-   //
 
-   // A node_hash_set supports the same overload set as `std::unordered_map`
 
-   // for construction and assignment:
 
-   //
 
-   // *  Default constructor
 
-   //
 
-   //    // No allocation for the table's elements is made.
 
-   //    absl::node_hash_set<std::string> set1;
 
-   //
 
-   // * Initializer List constructor
 
-   //
 
-   //   absl::node_hash_set<std::string> set2 =
 
-   //       {{"huey"}, {"dewey"}, {"louie"}};
 
-   //
 
-   // * Copy constructor
 
-   //
 
-   //   absl::node_hash_set<std::string> set3(set2);
 
-   //
 
-   // * Copy assignment operator
 
-   //
 
-   //  // Hash functor and Comparator are copied as well
 
-   //  absl::node_hash_set<std::string> set4;
 
-   //  set4 = set3;
 
-   //
 
-   // * Move constructor
 
-   //
 
-   //   // Move is guaranteed efficient
 
-   //   absl::node_hash_set<std::string> set5(std::move(set4));
 
-   //
 
-   // * Move assignment operator
 
-   //
 
-   //   // May be efficient if allocators are compatible
 
-   //   absl::node_hash_set<std::string> set6;
 
-   //   set6 = std::move(set5);
 
-   //
 
-   // * Range constructor
 
-   //
 
-   //   std::vector<std::string> v = {"a", "b"};
 
-   //   absl::node_hash_set<std::string> set7(v.begin(), v.end());
 
-   node_hash_set() {}
 
-   using Base::Base;
 
-   // node_hash_set::begin()
 
-   //
 
-   // Returns an iterator to the beginning of the `node_hash_set`.
 
-   using Base::begin;
 
-   // node_hash_set::cbegin()
 
-   //
 
-   // Returns a const iterator to the beginning of the `node_hash_set`.
 
-   using Base::cbegin;
 
-   // node_hash_set::cend()
 
-   //
 
-   // Returns a const iterator to the end of the `node_hash_set`.
 
-   using Base::cend;
 
-   // node_hash_set::end()
 
-   //
 
-   // Returns an iterator to the end of the `node_hash_set`.
 
-   using Base::end;
 
-   // node_hash_set::capacity()
 
-   //
 
-   // Returns the number of element slots (assigned, deleted, and empty)
 
-   // available within the `node_hash_set`.
 
-   //
 
-   // NOTE: this member function is particular to `absl::node_hash_set` and is
 
-   // not provided in the `std::unordered_map` API.
 
-   using Base::capacity;
 
-   // node_hash_set::empty()
 
-   //
 
-   // Returns whether or not the `node_hash_set` is empty.
 
-   using Base::empty;
 
-   // node_hash_set::max_size()
 
-   //
 
-   // Returns the largest theoretical possible number of elements within a
 
-   // `node_hash_set` under current memory constraints. This value can be thought
 
-   // of the largest value of `std::distance(begin(), end())` for a
 
-   // `node_hash_set<T>`.
 
-   using Base::max_size;
 
-   // node_hash_set::size()
 
-   //
 
-   // Returns the number of elements currently within the `node_hash_set`.
 
-   using Base::size;
 
-   // node_hash_set::clear()
 
-   //
 
-   // Removes all elements from the `node_hash_set`. Invalidates any references,
 
-   // pointers, or iterators referring to contained elements.
 
-   //
 
-   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
 
-   // the underlying buffer call `erase(begin(), end())`.
 
-   using Base::clear;
 
-   // node_hash_set::erase()
 
-   //
 
-   // Erases elements within the `node_hash_set`. Erasing does not trigger a
 
-   // rehash. Overloads are listed below.
 
-   //
 
-   // void erase(const_iterator pos):
 
-   //
 
-   //   Erases the element at `position` of the `node_hash_set`, returning
 
-   //   `void`.
 
-   //
 
-   //   NOTE: this return behavior is different than that of STL containers in
 
-   //   general and `std::unordered_map` in particular.
 
-   //
 
-   // iterator erase(const_iterator first, const_iterator last):
 
-   //
 
-   //   Erases the elements in the open interval [`first`, `last`), returning an
 
-   //   iterator pointing to `last`.
 
-   //
 
-   // size_type erase(const key_type& key):
 
-   //
 
-   //   Erases the element with the matching key, if it exists, returning the
 
-   //   number of elements erased (0 or 1).
 
-   using Base::erase;
 
-   // node_hash_set::insert()
 
-   //
 
-   // Inserts an element of the specified value into the `node_hash_set`,
 
-   // returning an iterator pointing to the newly inserted element, provided that
 
-   // an element with the given key does not already exist. If rehashing occurs
 
-   // due to the insertion, all iterators are invalidated. Overloads are listed
 
-   // below.
 
-   //
 
-   // std::pair<iterator,bool> insert(const T& value):
 
-   //
 
-   //   Inserts a value into the `node_hash_set`. Returns a pair consisting of an
 
-   //   iterator to the inserted element (or to the element that prevented the
 
-   //   insertion) and a bool denoting whether the insertion took place.
 
-   //
 
-   // std::pair<iterator,bool> insert(T&& value):
 
-   //
 
-   //   Inserts a moveable value into the `node_hash_set`. Returns a pair
 
-   //   consisting of an iterator to the inserted element (or to the element that
 
-   //   prevented the insertion) and a bool denoting whether the insertion took
 
-   //   place.
 
-   //
 
-   // iterator insert(const_iterator hint, const T& value):
 
-   // iterator insert(const_iterator hint, T&& value):
 
-   //
 
-   //   Inserts a value, using the position of `hint` as a non-binding suggestion
 
-   //   for where to begin the insertion search. Returns an iterator to the
 
-   //   inserted element, or to the existing element that prevented the
 
-   //   insertion.
 
-   //
 
-   // void insert(InputIterator first, InputIterator last):
 
-   //
 
-   //   Inserts a range of values [`first`, `last`).
 
-   //
 
-   //   NOTE: Although the STL does not specify which element may be inserted if
 
-   //   multiple keys compare equivalently, for `node_hash_set` we guarantee the
 
-   //   first match is inserted.
 
-   //
 
-   // void insert(std::initializer_list<T> ilist):
 
-   //
 
-   //   Inserts the elements within the initializer list `ilist`.
 
-   //
 
-   //   NOTE: Although the STL does not specify which element may be inserted if
 
-   //   multiple keys compare equivalently within the initializer list, for
 
-   //   `node_hash_set` we guarantee the first match is inserted.
 
-   using Base::insert;
 
-   // node_hash_set::emplace()
 
-   //
 
-   // Inserts an element of the specified value by constructing it in-place
 
-   // within the `node_hash_set`, provided that no element with the given key
 
-   // already exists.
 
-   //
 
-   // The element may be constructed even if there already is an element with the
 
-   // key in the container, in which case the newly constructed element will be
 
-   // destroyed immediately.
 
-   //
 
-   // If rehashing occurs due to the insertion, all iterators are invalidated.
 
-   using Base::emplace;
 
-   // node_hash_set::emplace_hint()
 
-   //
 
-   // Inserts an element of the specified value by constructing it in-place
 
-   // within the `node_hash_set`, using the position of `hint` as a non-binding
 
-   // suggestion for where to begin the insertion search, and only inserts
 
-   // provided that no element with the given key already exists.
 
-   //
 
-   // The element may be constructed even if there already is an element with the
 
-   // key in the container, in which case the newly constructed element will be
 
-   // destroyed immediately.
 
-   //
 
-   // If rehashing occurs due to the insertion, all iterators are invalidated.
 
-   using Base::emplace_hint;
 
-   // node_hash_set::extract()
 
-   //
 
-   // Extracts the indicated element, erasing it in the process, and returns it
 
-   // as a C++17-compatible node handle. Overloads are listed below.
 
-   //
 
-   // node_type extract(const_iterator position):
 
-   //
 
-   //   Extracts the element at the indicated position and returns a node handle
 
-   //   owning that extracted data.
 
-   //
 
-   // node_type extract(const key_type& x):
 
-   //
 
-   //   Extracts the element with the key matching the passed key value and
 
-   //   returns a node handle owning that extracted data. If the `node_hash_set`
 
-   //   does not contain an element with a matching key, this function returns an
 
-   // empty node handle.
 
-   using Base::extract;
 
-   // node_hash_set::merge()
 
-   //
 
-   // Extracts elements from a given `source` flat hash map into this
 
-   // `node_hash_set`. If the destination `node_hash_set` already contains an
 
-   // element with an equivalent key, that element is not extracted.
 
-   using Base::merge;
 
-   // node_hash_set::swap(node_hash_set& other)
 
-   //
 
-   // Exchanges the contents of this `node_hash_set` with those of the `other`
 
-   // flat hash map, avoiding invocation of any move, copy, or swap operations on
 
-   // individual elements.
 
-   //
 
-   // All iterators and references on the `node_hash_set` remain valid, excepting
 
-   // for the past-the-end iterator, which is invalidated.
 
-   //
 
-   // `swap()` requires that the flat hash set's hashing and key equivalence
 
-   // functions be Swappable, and are exchaged using unqualified calls to
 
-   // non-member `swap()`. If the map's allocator has
 
-   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
 
-   // set to `true`, the allocators are also exchanged using an unqualified call
 
-   // to non-member `swap()`; otherwise, the allocators are not swapped.
 
-   using Base::swap;
 
-   // node_hash_set::rehash(count)
 
-   //
 
-   // Rehashes the `node_hash_set`, setting the number of slots to be at least
 
-   // the passed value. If the new number of slots increases the load factor more
 
-   // than the current maximum load factor
 
-   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
 
-   // will be at least `size()` / `max_load_factor()`.
 
-   //
 
-   // To force a rehash, pass rehash(0).
 
-   //
 
-   // NOTE: unlike behavior in `std::unordered_set`, references are also
 
-   // invalidated upon a `rehash()`.
 
-   using Base::rehash;
 
-   // node_hash_set::reserve(count)
 
-   //
 
-   // Sets the number of slots in the `node_hash_set` to the number needed to
 
-   // accommodate at least `count` total elements without exceeding the current
 
-   // maximum load factor, and may rehash the container if needed.
 
-   using Base::reserve;
 
-   // node_hash_set::contains()
 
-   //
 
-   // Determines whether an element comparing equal to the given `key` exists
 
-   // within the `node_hash_set`, returning `true` if so or `false` otherwise.
 
-   using Base::contains;
 
-   // node_hash_set::count(const Key& key) const
 
-   //
 
-   // Returns the number of elements comparing equal to the given `key` within
 
-   // the `node_hash_set`. note that this function will return either `1` or `0`
 
-   // since duplicate elements are not allowed within a `node_hash_set`.
 
-   using Base::count;
 
-   // node_hash_set::equal_range()
 
-   //
 
-   // Returns a closed range [first, last], defined by a `std::pair` of two
 
-   // iterators, containing all elements with the passed key in the
 
-   // `node_hash_set`.
 
-   using Base::equal_range;
 
-   // node_hash_set::find()
 
-   //
 
-   // Finds an element with the passed `key` within the `node_hash_set`.
 
-   using Base::find;
 
-   // node_hash_set::bucket_count()
 
-   //
 
-   // Returns the number of "buckets" within the `node_hash_set`. Note that
 
-   // because a flat hash map contains all elements within its internal storage,
 
-   // this value simply equals the current capacity of the `node_hash_set`.
 
-   using Base::bucket_count;
 
-   // node_hash_set::load_factor()
 
-   //
 
-   // Returns the current load factor of the `node_hash_set` (the average number
 
-   // of slots occupied with a value within the hash map).
 
-   using Base::load_factor;
 
-   // node_hash_set::max_load_factor()
 
-   //
 
-   // Manages the maximum load factor of the `node_hash_set`. Overloads are
 
-   // listed below.
 
-   //
 
-   // float node_hash_set::max_load_factor()
 
-   //
 
-   //   Returns the current maximum load factor of the `node_hash_set`.
 
-   //
 
-   // void node_hash_set::max_load_factor(float ml)
 
-   //
 
-   //   Sets the maximum load factor of the `node_hash_set` to the passed value.
 
-   //
 
-   //   NOTE: This overload is provided only for API compatibility with the STL;
 
-   //   `node_hash_set` will ignore any set load factor and manage its rehashing
 
-   //   internally as an implementation detail.
 
-   using Base::max_load_factor;
 
-   // node_hash_set::get_allocator()
 
-   //
 
-   // Returns the allocator function associated with this `node_hash_set`.
 
-   using Base::get_allocator;
 
-   // node_hash_set::hash_function()
 
-   //
 
-   // Returns the hashing function used to hash the keys within this
 
-   // `node_hash_set`.
 
-   using Base::hash_function;
 
-   // node_hash_set::key_eq()
 
-   //
 
-   // Returns the function used for comparing keys equality.
 
-   using Base::key_eq;
 
- };
 
- // erase_if(node_hash_set<>, Pred)
 
- //
 
- // Erases all elements that satisfy the predicate `pred` from the container `c`.
 
- template <typename T, typename H, typename E, typename A, typename Predicate>
 
- void erase_if(node_hash_set<T, H, E, A>& c, Predicate pred) {
 
-   container_internal::EraseIf(pred, &c);
 
- }
 
- namespace container_internal {
 
- template <class T>
 
- struct NodeHashSetPolicy
 
-     : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
 
-   using key_type = T;
 
-   using init_type = T;
 
-   using constant_iterators = std::true_type;
 
-   template <class Allocator, class... Args>
 
-   static T* new_element(Allocator* alloc, Args&&... args) {
 
-     using ValueAlloc =
 
-         typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
 
-     ValueAlloc value_alloc(*alloc);
 
-     T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
 
-     absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
 
-                                                   std::forward<Args>(args)...);
 
-     return res;
 
-   }
 
-   template <class Allocator>
 
-   static void delete_element(Allocator* alloc, T* elem) {
 
-     using ValueAlloc =
 
-         typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
 
-     ValueAlloc value_alloc(*alloc);
 
-     absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
 
-     absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
 
-   }
 
-   template <class F, class... Args>
 
-   static decltype(absl::container_internal::DecomposeValue(
 
-       std::declval<F>(), std::declval<Args>()...))
 
-   apply(F&& f, Args&&... args) {
 
-     return absl::container_internal::DecomposeValue(
 
-         std::forward<F>(f), std::forward<Args>(args)...);
 
-   }
 
-   static size_t element_space_used(const T*) { return sizeof(T); }
 
- };
 
- }  // namespace container_internal
 
- namespace container_algorithm_internal {
 
- // Specialization of trait in absl/algorithm/container.h
 
- template <class Key, class Hash, class KeyEqual, class Allocator>
 
- struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
 
-     : std::true_type {};
 
- }  // namespace container_algorithm_internal
 
- ABSL_NAMESPACE_END
 
- }  // namespace absl
 
- #endif  // ABSL_CONTAINER_NODE_HASH_SET_H_
 
 
  |